ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-1st GIF version

Definition df-1st 6105
Description: Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6111 proves that it does this. For example, (1st ‘⟨ 3 , 4 ) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5084 and op1stb 4455). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
df-1st 1st = (𝑥 ∈ V ↦ dom {𝑥})

Detailed syntax breakdown of Definition df-1st
StepHypRef Expression
1 c1st 6103 . 2 class 1st
2 vx . . 3 setvar 𝑥
3 cvv 2725 . . 3 class V
42cv 1342 . . . . . 6 class 𝑥
54csn 3575 . . . . 5 class {𝑥}
65cdm 4603 . . . 4 class dom {𝑥}
76cuni 3788 . . 3 class dom {𝑥}
82, 3, 7cmpt 4042 . 2 class (𝑥 ∈ V ↦ dom {𝑥})
91, 8wceq 1343 1 wff 1st = (𝑥 ∈ V ↦ dom {𝑥})
Colors of variables: wff set class
This definition is referenced by:  1stvalg  6107  fo1st  6122  f1stres  6124
  Copyright terms: Public domain W3C validator