![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fo1st | GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2755 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snex 4200 | . . . . 5 ⊢ {𝑥} ∈ V |
3 | 2 | dmex 4908 | . . . 4 ⊢ dom {𝑥} ∈ V |
4 | 3 | uniex 4452 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
5 | df-1st 6159 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
6 | 4, 5 | fnmpti 5359 | . 2 ⊢ 1st Fn V |
7 | 5 | rnmpt 4890 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
8 | vex 2755 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 8, 8 | opex 4244 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
10 | 8, 8 | op1sta 5125 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
11 | 10 | eqcomi 2193 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
12 | sneq 3618 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
13 | 12 | dmeqd 4844 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
14 | 13 | unieqd 3835 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
15 | 14 | eqeq2d 2201 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
16 | 15 | rspcev 2856 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
19 | 18 | abbi2i 2304 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
20 | 7, 19 | eqtr4i 2213 | . 2 ⊢ ran 1st = V |
21 | df-fo 5237 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
22 | 6, 20, 21 | mpbir2an 944 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 {cab 2175 ∃wrex 2469 Vcvv 2752 {csn 3607 〈cop 3610 ∪ cuni 3824 dom cdm 4641 ran crn 4642 Fn wfn 5226 –onto→wfo 5229 1st c1st 6157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-fun 5233 df-fn 5234 df-fo 5237 df-1st 6159 |
This theorem is referenced by: 1stcof 6182 1stexg 6186 df1st2 6238 1stconst 6240 algrflem 6248 algrflemg 6249 suplocexprlemell 7730 suplocexprlem2b 7731 suplocexprlemlub 7741 upxp 14156 uptx 14158 cnmpt1st 14172 |
Copyright terms: Public domain | W3C validator |