| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fo1st | GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| fo1st | ⊢ 1st :V–onto→V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4218 | . . . . 5 ⊢ {𝑥} ∈ V | 
| 3 | 2 | dmex 4932 | . . . 4 ⊢ dom {𝑥} ∈ V | 
| 4 | 3 | uniex 4472 | . . 3 ⊢ ∪ dom {𝑥} ∈ V | 
| 5 | df-1st 6198 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 6 | 4, 5 | fnmpti 5386 | . 2 ⊢ 1st Fn V | 
| 7 | 5 | rnmpt 4914 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} | 
| 8 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4262 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | 
| 10 | 8, 8 | op1sta 5151 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 | 
| 11 | 10 | eqcomi 2200 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} | 
| 12 | sneq 3633 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | dmeqd 4868 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) | 
| 14 | 13 | unieqd 3850 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) | 
| 15 | 14 | eqeq2d 2208 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) | 
| 16 | 15 | rspcev 2868 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) | 
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} | 
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) | 
| 19 | 18 | abbi2i 2311 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} | 
| 20 | 7, 19 | eqtr4i 2220 | . 2 ⊢ ran 1st = V | 
| 21 | df-fo 5264 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 22 | 6, 20, 21 | mpbir2an 944 | 1 ⊢ 1st :V–onto→V | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 {csn 3622 〈cop 3625 ∪ cuni 3839 dom cdm 4663 ran crn 4664 Fn wfn 5253 –onto→wfo 5256 1st c1st 6196 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-fo 5264 df-1st 6198 | 
| This theorem is referenced by: 1stcof 6221 1stexg 6225 df1st2 6277 1stconst 6279 algrflem 6287 algrflemg 6288 suplocexprlemell 7780 suplocexprlem2b 7781 suplocexprlemlub 7791 upxp 14508 uptx 14510 cnmpt1st 14524 | 
| Copyright terms: Public domain | W3C validator |