ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6063
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2692 . . . . . 6 𝑥 ∈ V
21snex 4117 . . . . 5 {𝑥} ∈ V
32dmex 4813 . . . 4 dom {𝑥} ∈ V
43uniex 4367 . . 3 dom {𝑥} ∈ V
5 df-1st 6046 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5259 . 2 1st Fn V
75rnmpt 4795 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2692 . . . . 5 𝑦 ∈ V
98, 8opex 4159 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5028 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2144 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3543 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4749 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3755 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2152 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2793 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 423 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 173 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2255 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2164 . 2 ran 1st = V
21 df-fo 5137 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 927 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 1481  {cab 2126  wrex 2418  Vcvv 2689  {csn 3532  cop 3535   cuni 3744  dom cdm 4547  ran crn 4548   Fn wfn 5126  ontowfo 5129  1st c1st 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-fo 5137  df-1st 6046
This theorem is referenced by:  1stcof  6069  1stexg  6073  df1st2  6124  1stconst  6126  algrflem  6134  algrflemg  6135  suplocexprlemell  7545  suplocexprlem2b  7546  suplocexprlemlub  7556  upxp  12480  uptx  12482  cnmpt1st  12496
  Copyright terms: Public domain W3C validator