Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo1st | GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snex 4164 | . . . . 5 ⊢ {𝑥} ∈ V |
3 | 2 | dmex 4870 | . . . 4 ⊢ dom {𝑥} ∈ V |
4 | 3 | uniex 4415 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
5 | df-1st 6108 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
6 | 4, 5 | fnmpti 5316 | . 2 ⊢ 1st Fn V |
7 | 5 | rnmpt 4852 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
8 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 8, 8 | opex 4207 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
10 | 8, 8 | op1sta 5085 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
11 | 10 | eqcomi 2169 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
12 | sneq 3587 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
13 | 12 | dmeqd 4806 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
14 | 13 | unieqd 3800 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
15 | 14 | eqeq2d 2177 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
16 | 15 | rspcev 2830 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 9, 11, 16 | mp2an 423 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
18 | 8, 17 | 2th 173 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
19 | 18 | abbi2i 2281 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
20 | 7, 19 | eqtr4i 2189 | . 2 ⊢ ran 1st = V |
21 | df-fo 5194 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
22 | 6, 20, 21 | mpbir2an 932 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 {cab 2151 ∃wrex 2445 Vcvv 2726 {csn 3576 〈cop 3579 ∪ cuni 3789 dom cdm 4604 ran crn 4605 Fn wfn 5183 –onto→wfo 5186 1st c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-fo 5194 df-1st 6108 |
This theorem is referenced by: 1stcof 6131 1stexg 6135 df1st2 6187 1stconst 6189 algrflem 6197 algrflemg 6198 suplocexprlemell 7654 suplocexprlem2b 7655 suplocexprlemlub 7665 upxp 12912 uptx 12914 cnmpt1st 12928 |
Copyright terms: Public domain | W3C validator |