| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo1st | GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4268 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | dmex 4990 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 4 | 3 | uniex 4527 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 5 | df-1st 6284 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 6 | 4, 5 | fnmpti 5451 | . 2 ⊢ 1st Fn V |
| 7 | 5 | rnmpt 4971 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 8 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4314 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op1sta 5209 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2233 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 12 | sneq 3677 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | dmeqd 4924 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3898 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2241 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2907 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 19 | 18 | abbi2i 2344 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 20 | 7, 19 | eqtr4i 2253 | . 2 ⊢ ran 1st = V |
| 21 | df-fo 5323 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 22 | 6, 20, 21 | mpbir2an 948 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 {csn 3666 〈cop 3669 ∪ cuni 3887 dom cdm 4718 ran crn 4719 Fn wfn 5312 –onto→wfo 5315 1st c1st 6282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-fo 5323 df-1st 6284 |
| This theorem is referenced by: 1stcof 6307 1stexg 6311 df1st2 6363 1stconst 6365 algrflem 6373 algrflemg 6374 suplocexprlemell 7896 suplocexprlem2b 7897 suplocexprlemlub 7907 upxp 14940 uptx 14942 cnmpt1st 14956 |
| Copyright terms: Public domain | W3C validator |