ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6233
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . . 6 𝑥 ∈ V
21snex 4228 . . . . 5 {𝑥} ∈ V
32dmex 4942 . . . 4 dom {𝑥} ∈ V
43uniex 4482 . . 3 dom {𝑥} ∈ V
5 df-1st 6216 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5398 . 2 1st Fn V
75rnmpt 4924 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2774 . . . . 5 𝑦 ∈ V
98, 8opex 4272 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5161 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2208 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3643 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4878 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3860 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2216 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2876 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2319 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2228 . 2 ran 1st = V
21 df-fo 5274 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 944 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  {cab 2190  wrex 2484  Vcvv 2771  {csn 3632  cop 3635   cuni 3849  dom cdm 4673  ran crn 4674   Fn wfn 5263  ontowfo 5266  1st c1st 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-fun 5270  df-fn 5271  df-fo 5274  df-1st 6216
This theorem is referenced by:  1stcof  6239  1stexg  6243  df1st2  6295  1stconst  6297  algrflem  6305  algrflemg  6306  suplocexprlemell  7808  suplocexprlem2b  7809  suplocexprlemlub  7819  upxp  14662  uptx  14664  cnmpt1st  14678
  Copyright terms: Public domain W3C validator