| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo1st | GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4228 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | dmex 4942 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 4 | 3 | uniex 4482 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 5 | df-1st 6216 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 6 | 4, 5 | fnmpti 5398 | . 2 ⊢ 1st Fn V |
| 7 | 5 | rnmpt 4924 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 8 | vex 2774 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4272 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op1sta 5161 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2208 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 12 | sneq 3643 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | dmeqd 4878 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3860 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2216 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2876 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 19 | 18 | abbi2i 2319 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 20 | 7, 19 | eqtr4i 2228 | . 2 ⊢ ran 1st = V |
| 21 | df-fo 5274 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 22 | 6, 20, 21 | mpbir2an 944 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 {cab 2190 ∃wrex 2484 Vcvv 2771 {csn 3632 〈cop 3635 ∪ cuni 3849 dom cdm 4673 ran crn 4674 Fn wfn 5263 –onto→wfo 5266 1st c1st 6214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-fo 5274 df-1st 6216 |
| This theorem is referenced by: 1stcof 6239 1stexg 6243 df1st2 6295 1stconst 6297 algrflem 6305 algrflemg 6306 suplocexprlemell 7808 suplocexprlem2b 7809 suplocexprlemlub 7819 upxp 14662 uptx 14664 cnmpt1st 14678 |
| Copyright terms: Public domain | W3C validator |