| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo1st | GIF version | ||
| Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo1st | ⊢ 1st :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4237 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | dmex 4954 | . . . 4 ⊢ dom {𝑥} ∈ V |
| 4 | 3 | uniex 4492 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
| 5 | df-1st 6239 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 6 | 4, 5 | fnmpti 5414 | . 2 ⊢ 1st Fn V |
| 7 | 5 | rnmpt 4935 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 8 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4281 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op1sta 5173 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2210 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
| 12 | sneq 3649 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | dmeqd 4889 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3867 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2218 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2881 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
| 19 | 18 | abbi2i 2321 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
| 20 | 7, 19 | eqtr4i 2230 | . 2 ⊢ ran 1st = V |
| 21 | df-fo 5286 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
| 22 | 6, 20, 21 | mpbir2an 945 | 1 ⊢ 1st :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 {csn 3638 〈cop 3641 ∪ cuni 3856 dom cdm 4683 ran crn 4684 Fn wfn 5275 –onto→wfo 5278 1st c1st 6237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-fo 5286 df-1st 6239 |
| This theorem is referenced by: 1stcof 6262 1stexg 6266 df1st2 6318 1stconst 6320 algrflem 6328 algrflemg 6329 suplocexprlemell 7846 suplocexprlem2b 7847 suplocexprlemlub 7857 upxp 14819 uptx 14821 cnmpt1st 14835 |
| Copyright terms: Public domain | W3C validator |