ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6176
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . . 6 𝑥 ∈ V
21snex 4200 . . . . 5 {𝑥} ∈ V
32dmex 4908 . . . 4 dom {𝑥} ∈ V
43uniex 4452 . . 3 dom {𝑥} ∈ V
5 df-1st 6159 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5359 . 2 1st Fn V
75rnmpt 4890 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2755 . . . . 5 𝑦 ∈ V
98, 8opex 4244 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5125 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2193 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3618 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4844 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3835 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2201 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2856 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2304 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2213 . 2 ran 1st = V
21 df-fo 5237 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 944 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  {cab 2175  wrex 2469  Vcvv 2752  {csn 3607  cop 3610   cuni 3824  dom cdm 4641  ran crn 4642   Fn wfn 5226  ontowfo 5229  1st c1st 6157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-fun 5233  df-fn 5234  df-fo 5237  df-1st 6159
This theorem is referenced by:  1stcof  6182  1stexg  6186  df1st2  6238  1stconst  6240  algrflem  6248  algrflemg  6249  suplocexprlemell  7730  suplocexprlem2b  7731  suplocexprlemlub  7741  upxp  14156  uptx  14158  cnmpt1st  14172
  Copyright terms: Public domain W3C validator