ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6125
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . 6 𝑥 ∈ V
21snex 4164 . . . . 5 {𝑥} ∈ V
32dmex 4870 . . . 4 dom {𝑥} ∈ V
43uniex 4415 . . 3 dom {𝑥} ∈ V
5 df-1st 6108 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5316 . 2 1st Fn V
75rnmpt 4852 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2729 . . . . 5 𝑦 ∈ V
98, 8opex 4207 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5085 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2169 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3587 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4806 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3800 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2177 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2830 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 423 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 173 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2281 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2189 . 2 ran 1st = V
21 df-fo 5194 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 932 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  {cab 2151  wrex 2445  Vcvv 2726  {csn 3576  cop 3579   cuni 3789  dom cdm 4604  ran crn 4605   Fn wfn 5183  ontowfo 5186  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-fo 5194  df-1st 6108
This theorem is referenced by:  1stcof  6131  1stexg  6135  df1st2  6187  1stconst  6189  algrflem  6197  algrflemg  6198  suplocexprlemell  7654  suplocexprlem2b  7655  suplocexprlemlub  7665  upxp  12912  uptx  12914  cnmpt1st  12928
  Copyright terms: Public domain W3C validator