ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st GIF version

Theorem fo1st 6301
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st 1st :V–onto→V

Proof of Theorem fo1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . 6 𝑥 ∈ V
21snex 4268 . . . . 5 {𝑥} ∈ V
32dmex 4990 . . . 4 dom {𝑥} ∈ V
43uniex 4527 . . 3 dom {𝑥} ∈ V
5 df-1st 6284 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
64, 5fnmpti 5451 . 2 1st Fn V
75rnmpt 4971 . . 3 ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
8 vex 2802 . . . . 5 𝑦 ∈ V
98, 8opex 4314 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op1sta 5209 . . . . . . 7 dom {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2233 . . . . . 6 𝑦 = dom {⟨𝑦, 𝑦⟩}
12 sneq 3677 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312dmeqd 4924 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1413unieqd 3898 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → dom {𝑥} = dom {⟨𝑦, 𝑦⟩})
1514eqeq2d 2241 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = dom {𝑥} ↔ 𝑦 = dom {⟨𝑦, 𝑦⟩}))
1615rspcev 2907 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = dom {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = dom {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = dom {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = dom {𝑥})
1918abbi2i 2344 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = dom {𝑥}}
207, 19eqtr4i 2253 . 2 ran 1st = V
21 df-fo 5323 . 2 (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V))
226, 20, 21mpbir2an 948 1 1st :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  {csn 3666  cop 3669   cuni 3887  dom cdm 4718  ran crn 4719   Fn wfn 5312  ontowfo 5315  1st c1st 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-fo 5323  df-1st 6284
This theorem is referenced by:  1stcof  6307  1stexg  6311  df1st2  6363  1stconst  6365  algrflem  6373  algrflemg  6374  suplocexprlemell  7896  suplocexprlem2b  7897  suplocexprlemlub  7907  upxp  14940  uptx  14942  cnmpt1st  14956
  Copyright terms: Public domain W3C validator