![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fo1st | GIF version |
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo1st | ⊢ 1st :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snex 4215 | . . . . 5 ⊢ {𝑥} ∈ V |
3 | 2 | dmex 4929 | . . . 4 ⊢ dom {𝑥} ∈ V |
4 | 3 | uniex 4469 | . . 3 ⊢ ∪ dom {𝑥} ∈ V |
5 | df-1st 6195 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
6 | 4, 5 | fnmpti 5383 | . 2 ⊢ 1st Fn V |
7 | 5 | rnmpt 4911 | . . 3 ⊢ ran 1st = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
8 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 8, 8 | opex 4259 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
10 | 8, 8 | op1sta 5148 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑦〉} = 𝑦 |
11 | 10 | eqcomi 2197 | . . . . . 6 ⊢ 𝑦 = ∪ dom {〈𝑦, 𝑦〉} |
12 | sneq 3630 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
13 | 12 | dmeqd 4865 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → dom {𝑥} = dom {〈𝑦, 𝑦〉}) |
14 | 13 | unieqd 3847 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑦〉}) |
15 | 14 | eqeq2d 2205 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ dom {𝑥} ↔ 𝑦 = ∪ dom {〈𝑦, 𝑦〉})) |
16 | 15 | rspcev 2865 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ dom {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥} |
18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}) |
19 | 18 | abbi2i 2308 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ dom {𝑥}} |
20 | 7, 19 | eqtr4i 2217 | . 2 ⊢ ran 1st = V |
21 | df-fo 5261 | . 2 ⊢ (1st :V–onto→V ↔ (1st Fn V ∧ ran 1st = V)) | |
22 | 6, 20, 21 | mpbir2an 944 | 1 ⊢ 1st :V–onto→V |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 {cab 2179 ∃wrex 2473 Vcvv 2760 {csn 3619 〈cop 3622 ∪ cuni 3836 dom cdm 4660 ran crn 4661 Fn wfn 5250 –onto→wfo 5253 1st c1st 6193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-fun 5257 df-fn 5258 df-fo 5261 df-1st 6195 |
This theorem is referenced by: 1stcof 6218 1stexg 6222 df1st2 6274 1stconst 6276 algrflem 6284 algrflemg 6285 suplocexprlemell 7775 suplocexprlem2b 7776 suplocexprlemlub 7786 upxp 14451 uptx 14453 cnmpt1st 14467 |
Copyright terms: Public domain | W3C validator |