Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1stb | GIF version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | ⊢ 𝐴 ∈ V |
op1stb.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 3757 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | inteqi 3828 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
5 | 1 | snex 4164 | . . . . . 6 ⊢ {𝐴} ∈ V |
6 | prexg 4189 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
7 | 1, 2, 6 | mp2an 423 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V |
8 | 5, 7 | intpr 3856 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
9 | snsspr1 3721 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
10 | df-ss 3129 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
11 | 9, 10 | mpbi 144 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
12 | 8, 11 | eqtri 2186 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
13 | 4, 12 | eqtri 2186 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
14 | 13 | inteqi 3828 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
15 | 1 | intsn 3859 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
16 | 14, 15 | eqtri 2186 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 {csn 3576 {cpr 3577 〈cop 3579 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-int 3825 |
This theorem is referenced by: elreldm 4830 op2ndb 5087 1stval2 6123 fundmen 6772 xpsnen 6787 |
Copyright terms: Public domain | W3C validator |