ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb GIF version

Theorem op1stb 4456
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 3757 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 3828 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4164 . . . . . 6 {𝐴} ∈ V
6 prexg 4189 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 423 . . . . . 6 {𝐴, 𝐵} ∈ V
85, 7intpr 3856 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
9 snsspr1 3721 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
10 df-ss 3129 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
119, 10mpbi 144 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
128, 11eqtri 2186 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
134, 12eqtri 2186 . . 3 𝐴, 𝐵⟩ = {𝐴}
1413inteqi 3828 . 2 𝐴, 𝐵⟩ = {𝐴}
151intsn 3859 . 2 {𝐴} = 𝐴
1614, 15eqtri 2186 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  cin 3115  wss 3116  {csn 3576  {cpr 3577  cop 3579   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-int 3825
This theorem is referenced by:  elreldm  4830  op2ndb  5087  1stval2  6123  fundmen  6772  xpsnen  6787
  Copyright terms: Public domain W3C validator