| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1stb | GIF version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| op1stb.1 | ⊢ 𝐴 ∈ V |
| op1stb.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 3808 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | inteqi 3879 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
| 5 | 1 | snex 4219 | . . . . . 6 ⊢ {𝐴} ∈ V |
| 6 | prexg 4245 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 7 | 1, 2, 6 | mp2an 426 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V |
| 8 | 5, 7 | intpr 3907 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
| 9 | snsspr1 3771 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 10 | df-ss 3170 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
| 11 | 9, 10 | mpbi 145 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
| 12 | 8, 11 | eqtri 2217 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
| 13 | 4, 12 | eqtri 2217 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
| 14 | 13 | inteqi 3879 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
| 15 | 1 | intsn 3910 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
| 16 | 14, 15 | eqtri 2217 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 {csn 3623 {cpr 3624 〈cop 3626 ∩ cint 3875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-int 3876 |
| This theorem is referenced by: elreldm 4893 op2ndb 5154 1stval2 6222 fundmen 6874 xpsnen 6889 |
| Copyright terms: Public domain | W3C validator |