ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb GIF version

Theorem op1stb 4480
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 3779 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 3850 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4187 . . . . . 6 {𝐴} ∈ V
6 prexg 4213 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 426 . . . . . 6 {𝐴, 𝐵} ∈ V
85, 7intpr 3878 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
9 snsspr1 3742 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
10 df-ss 3144 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
119, 10mpbi 145 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
128, 11eqtri 2198 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
134, 12eqtri 2198 . . 3 𝐴, 𝐵⟩ = {𝐴}
1413inteqi 3850 . 2 𝐴, 𝐵⟩ = {𝐴}
151intsn 3881 . 2 {𝐴} = 𝐴
1614, 15eqtri 2198 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2739  cin 3130  wss 3131  {csn 3594  {cpr 3595  cop 3597   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-int 3847
This theorem is referenced by:  elreldm  4855  op2ndb  5114  1stval2  6158  fundmen  6808  xpsnen  6823
  Copyright terms: Public domain W3C validator