![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op1stb | GIF version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | ⊢ 𝐴 ∈ V |
op1stb.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1stb | ⊢ ∩ ∩ ⟨𝐴, 𝐵⟩ = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 3779 | . . . . 5 ⊢ ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | inteqi 3850 | . . . 4 ⊢ ∩ ⟨𝐴, 𝐵⟩ = ∩ {{𝐴}, {𝐴, 𝐵}} |
5 | 1 | snex 4187 | . . . . . 6 ⊢ {𝐴} ∈ V |
6 | prexg 4213 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
7 | 1, 2, 6 | mp2an 426 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V |
8 | 5, 7 | intpr 3878 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
9 | snsspr1 3742 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
10 | df-ss 3144 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
11 | 9, 10 | mpbi 145 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
12 | 8, 11 | eqtri 2198 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
13 | 4, 12 | eqtri 2198 | . . 3 ⊢ ∩ ⟨𝐴, 𝐵⟩ = {𝐴} |
14 | 13 | inteqi 3850 | . 2 ⊢ ∩ ∩ ⟨𝐴, 𝐵⟩ = ∩ {𝐴} |
15 | 1 | intsn 3881 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
16 | 14, 15 | eqtri 2198 | 1 ⊢ ∩ ∩ ⟨𝐴, 𝐵⟩ = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ⊆ wss 3131 {csn 3594 {cpr 3595 ⟨cop 3597 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-int 3847 |
This theorem is referenced by: elreldm 4855 op2ndb 5114 1stval2 6158 fundmen 6808 xpsnen 6823 |
Copyright terms: Public domain | W3C validator |