ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb GIF version

Theorem op1stb 4463
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 3764 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 3835 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4171 . . . . . 6 {𝐴} ∈ V
6 prexg 4196 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 424 . . . . . 6 {𝐴, 𝐵} ∈ V
85, 7intpr 3863 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
9 snsspr1 3728 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
10 df-ss 3134 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
119, 10mpbi 144 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
128, 11eqtri 2191 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
134, 12eqtri 2191 . . 3 𝐴, 𝐵⟩ = {𝐴}
1413inteqi 3835 . 2 𝐴, 𝐵⟩ = {𝐴}
151intsn 3866 . 2 {𝐴} = 𝐴
1614, 15eqtri 2191 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  cin 3120  wss 3121  {csn 3583  {cpr 3584  cop 3586   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-int 3832
This theorem is referenced by:  elreldm  4837  op2ndb  5094  1stval2  6134  fundmen  6784  xpsnen  6799
  Copyright terms: Public domain W3C validator