ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb GIF version

Theorem op1stb 4514
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 3808 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 3879 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4219 . . . . . 6 {𝐴} ∈ V
6 prexg 4245 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 426 . . . . . 6 {𝐴, 𝐵} ∈ V
85, 7intpr 3907 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
9 snsspr1 3771 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
10 df-ss 3170 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
119, 10mpbi 145 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
128, 11eqtri 2217 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
134, 12eqtri 2217 . . 3 𝐴, 𝐵⟩ = {𝐴}
1413inteqi 3879 . 2 𝐴, 𝐵⟩ = {𝐴}
151intsn 3910 . 2 {𝐴} = 𝐴
1614, 15eqtri 2217 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  wss 3157  {csn 3623  {cpr 3624  cop 3626   cint 3875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-int 3876
This theorem is referenced by:  elreldm  4893  op2ndb  5154  1stval2  6222  fundmen  6874  xpsnen  6889
  Copyright terms: Public domain W3C validator