ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb GIF version

Theorem op1stb 4525
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 3818 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 3889 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
51snex 4229 . . . . . 6 {𝐴} ∈ V
6 prexg 4255 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 426 . . . . . 6 {𝐴, 𝐵} ∈ V
85, 7intpr 3917 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
9 snsspr1 3781 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
10 df-ss 3179 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
119, 10mpbi 145 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
128, 11eqtri 2226 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
134, 12eqtri 2226 . . 3 𝐴, 𝐵⟩ = {𝐴}
1413inteqi 3889 . 2 𝐴, 𝐵⟩ = {𝐴}
151intsn 3920 . 2 {𝐴} = 𝐴
1614, 15eqtri 2226 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  wss 3166  {csn 3633  {cpr 3634  cop 3636   cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-int 3886
This theorem is referenced by:  elreldm  4904  op2ndb  5166  1stval2  6241  fundmen  6898  xpsnen  6916
  Copyright terms: Public domain W3C validator