Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1stvalg | GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stvalg | ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4179 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | dmexg 4884 | . . 3 ⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) | |
3 | uniexg 4433 | . . 3 ⊢ (dom {𝐴} ∈ V → ∪ dom {𝐴} ∈ V) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) |
5 | sneq 3600 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
6 | 5 | dmeqd 4822 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
7 | 6 | unieqd 3816 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
8 | df-1st 6131 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
9 | 7, 8 | fvmptg 5584 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ dom {𝐴} ∈ V) → (1st ‘𝐴) = ∪ dom {𝐴}) |
10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 {csn 3589 ∪ cuni 3805 dom cdm 4620 ‘cfv 5208 1st c1st 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fv 5216 df-1st 6131 |
This theorem is referenced by: 1st0 6135 op1st 6137 elxp6 6160 |
Copyright terms: Public domain | W3C validator |