ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stvalg GIF version

Theorem 1stvalg 6200
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
1stvalg (𝐴 ∈ V → (1st𝐴) = dom {𝐴})

Proof of Theorem 1stvalg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snexg 4217 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
2 dmexg 4930 . . 3 ({𝐴} ∈ V → dom {𝐴} ∈ V)
3 uniexg 4474 . . 3 (dom {𝐴} ∈ V → dom {𝐴} ∈ V)
41, 2, 33syl 17 . 2 (𝐴 ∈ V → dom {𝐴} ∈ V)
5 sneq 3633 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
65dmeqd 4868 . . . 4 (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴})
76unieqd 3850 . . 3 (𝑥 = 𝐴 dom {𝑥} = dom {𝐴})
8 df-1st 6198 . . 3 1st = (𝑥 ∈ V ↦ dom {𝑥})
97, 8fvmptg 5637 . 2 ((𝐴 ∈ V ∧ dom {𝐴} ∈ V) → (1st𝐴) = dom {𝐴})
104, 9mpdan 421 1 (𝐴 ∈ V → (1st𝐴) = dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622   cuni 3839  dom cdm 4663  cfv 5258  1st c1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-1st 6198
This theorem is referenced by:  1st0  6202  op1st  6204  elxp6  6227
  Copyright terms: Public domain W3C validator