| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stvalg | GIF version | ||
| Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 1stvalg | ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4244 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | dmexg 4961 | . . 3 ⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) | |
| 3 | uniexg 4504 | . . 3 ⊢ (dom {𝐴} ∈ V → ∪ dom {𝐴} ∈ V) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) |
| 5 | sneq 3654 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 6 | 5 | dmeqd 4899 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
| 7 | 6 | unieqd 3875 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
| 8 | df-1st 6249 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 9 | 7, 8 | fvmptg 5678 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ dom {𝐴} ∈ V) → (1st ‘𝐴) = ∪ dom {𝐴}) |
| 10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 ∪ cuni 3864 dom cdm 4693 ‘cfv 5290 1st c1st 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-1st 6249 |
| This theorem is referenced by: 1st0 6253 op1st 6255 elxp6 6278 |
| Copyright terms: Public domain | W3C validator |