Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1stvalg | GIF version |
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
1stvalg | ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4163 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | dmexg 4868 | . . 3 ⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) | |
3 | uniexg 4417 | . . 3 ⊢ (dom {𝐴} ∈ V → ∪ dom {𝐴} ∈ V) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) |
5 | sneq 3587 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
6 | 5 | dmeqd 4806 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
7 | 6 | unieqd 3800 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
8 | df-1st 6108 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
9 | 7, 8 | fvmptg 5562 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ dom {𝐴} ∈ V) → (1st ‘𝐴) = ∪ dom {𝐴}) |
10 | 4, 9 | mpdan 418 | 1 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 ∪ cuni 3789 dom cdm 4604 ‘cfv 5188 1st c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 |
This theorem is referenced by: 1st0 6112 op1st 6114 elxp6 6137 |
Copyright terms: Public domain | W3C validator |