| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stvalg | GIF version | ||
| Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 1stvalg | ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4228 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | dmexg 4942 | . . 3 ⊢ ({𝐴} ∈ V → dom {𝐴} ∈ V) | |
| 3 | uniexg 4486 | . . 3 ⊢ (dom {𝐴} ∈ V → ∪ dom {𝐴} ∈ V) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐴 ∈ V → ∪ dom {𝐴} ∈ V) |
| 5 | sneq 3644 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 6 | 5 | dmeqd 4880 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {𝑥} = dom {𝐴}) |
| 7 | 6 | unieqd 3861 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ dom {𝑥} = ∪ dom {𝐴}) |
| 8 | df-1st 6226 | . . 3 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 9 | 7, 8 | fvmptg 5655 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ dom {𝐴} ∈ V) → (1st ‘𝐴) = ∪ dom {𝐴}) |
| 10 | 4, 9 | mpdan 421 | 1 ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 {csn 3633 ∪ cuni 3850 dom cdm 4675 ‘cfv 5271 1st c1st 6224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-1st 6226 |
| This theorem is referenced by: 1st0 6230 op1st 6232 elxp6 6255 |
| Copyright terms: Public domain | W3C validator |