Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op1sta | GIF version |
Description: Extract the first member of an ordered pair. (See op2nda 5105 to extract the second member and op1stb 4472 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | dmsnop 5094 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
3 | 2 | unieqi 3815 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | unisn 3821 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
6 | 3, 5 | eqtri 2196 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 {csn 3589 〈cop 3592 ∪ cuni 3805 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-dm 4630 |
This theorem is referenced by: op1st 6137 fo1st 6148 f1stres 6150 xpassen 6820 xpdom2 6821 |
Copyright terms: Public domain | W3C validator |