ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta GIF version

Theorem op1sta 5183
Description: Extract the first member of an ordered pair. (See op2nda 5186 to extract the second member and op1stb 4543 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op1sta dom {⟨𝐴, 𝐵⟩} = 𝐴

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4 𝐵 ∈ V
21dmsnop 5175 . . 3 dom {⟨𝐴, 𝐵⟩} = {𝐴}
32unieqi 3874 . 2 dom {⟨𝐴, 𝐵⟩} = {𝐴}
4 cnvsn.1 . . 3 𝐴 ∈ V
54unisn 3880 . 2 {𝐴} = 𝐴
63, 5eqtri 2228 1 dom {⟨𝐴, 𝐵⟩} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  Vcvv 2776  {csn 3643  cop 3646   cuni 3864  dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-dm 4703
This theorem is referenced by:  op1st  6255  fo1st  6266  f1stres  6268  xpassen  6950  xpdom2  6951
  Copyright terms: Public domain W3C validator