ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1sta GIF version

Theorem op1sta 5112
Description: Extract the first member of an ordered pair. (See op2nda 5115 to extract the second member and op1stb 4480 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op1sta dom {⟨𝐴, 𝐵⟩} = 𝐴

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4 𝐵 ∈ V
21dmsnop 5104 . . 3 dom {⟨𝐴, 𝐵⟩} = {𝐴}
32unieqi 3821 . 2 dom {⟨𝐴, 𝐵⟩} = {𝐴}
4 cnvsn.1 . . 3 𝐴 ∈ V
54unisn 3827 . 2 {𝐴} = 𝐴
63, 5eqtri 2198 1 dom {⟨𝐴, 𝐵⟩} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2739  {csn 3594  cop 3597   cuni 3811  dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-dm 4638
This theorem is referenced by:  op1st  6149  fo1st  6160  f1stres  6162  xpassen  6832  xpdom2  6833
  Copyright terms: Public domain W3C validator