| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1sta | GIF version | ||
| Description: Extract the first member of an ordered pair. (See op2nda 5213 to extract the second member and op1stb 4569 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dmsnop 5202 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 3 | 2 | unieqi 3898 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
| 4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4 | unisn 3904 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
| 6 | 3, 5 | eqtri 2250 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 〈cop 3669 ∪ cuni 3888 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-dm 4729 |
| This theorem is referenced by: op1st 6292 fo1st 6303 f1stres 6305 xpassen 6989 xpdom2 6990 |
| Copyright terms: Public domain | W3C validator |