| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1sta | GIF version | ||
| Description: Extract the first member of an ordered pair. (See op2nda 5154 to extract the second member and op1stb 4513 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dmsnop 5143 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 3 | 2 | unieqi 3849 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
| 4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4 | unisn 3855 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
| 6 | 3, 5 | eqtri 2217 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 〈cop 3625 ∪ cuni 3839 dom cdm 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-dm 4673 |
| This theorem is referenced by: op1st 6204 fo1st 6215 f1stres 6217 xpassen 6889 xpdom2 6890 |
| Copyright terms: Public domain | W3C validator |