Theorem List for Intuitionistic Logic Explorer - 6101-6200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | caovord3 6101* |
Ordering law. (Contributed by NM, 29-Feb-1996.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ 𝐷 ∈ V ⇒ ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| |
| Theorem | caovdig 6102* |
Convert an operation distributive law to class notation. (Contributed
by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
| |
| Theorem | caovdid 6103* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
| |
| Theorem | caovdir2d 6104* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| |
| Theorem | caovdirg 6105* |
Convert an operation reverse distributive law to class notation.
(Contributed by Mario Carneiro, 19-Oct-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdird 6106* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdi 6107* |
Convert an operation distributive law to class notation. (Contributed
by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) ⇒ ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| |
| Theorem | caov32d 6108* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
| |
| Theorem | caov12d 6109* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| |
| Theorem | caov31d 6110* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
| |
| Theorem | caov13d 6111* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴))) |
| |
| Theorem | caov4d 6112* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| |
| Theorem | caov411d 6113* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
| |
| Theorem | caov42d 6114* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))) |
| |
| Theorem | caov32 6115* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
| |
| Theorem | caov12 6116* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
| |
| Theorem | caov31 6117* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
| |
| Theorem | caov13 6118* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
| |
| Theorem | caovdilemd 6119* |
Lemma used by real number construction. (Contributed by Jim Kingdon,
16-Sep-2019.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆) ⇒ ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| |
| Theorem | caovlem2d 6120* |
Rearrangement of expression involving multiplication (𝐺) and
addition (𝐹). (Contributed by Jim Kingdon,
3-Jan-2020.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆)
& ⊢ (𝜑 → 𝑅 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |
| |
| Theorem | caovimo 6121* |
Uniqueness of inverse element in commutative, associative operation with
identity. The identity element is 𝐵. (Contributed by Jim Kingdon,
18-Sep-2019.)
|
| ⊢ 𝐵 ∈ 𝑆
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) ⇒ ⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) |
| |
| 2.6.12 Maps-to notation
|
| |
| Theorem | elmpocl 6122* |
If a two-parameter class is inhabited, constrain the implicit pair.
(Contributed by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| |
| Theorem | elmpocl1 6123* |
If a two-parameter class is inhabited, the first argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
| |
| Theorem | elmpocl2 6124* |
If a two-parameter class is inhabited, the second argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
| |
| Theorem | elovmpod 6125* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.) Variant of elovmpo 6126 in deduction form. (Revised by AV,
20-Apr-2025.)
|
| ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| |
| Theorem | elovmpo 6126* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.)
|
| ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ 𝐶 ∈ V & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) ⇒ ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| |
| Theorem | elovmporab 6127* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element.
(Contributed by Alexander van der Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ 𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀)) |
| |
| Theorem | elovmporab1w 6128* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element. Here,
the base set of the class abstraction depends on the first operand.
(Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG,
26-Jan-2024.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| |
| Theorem | f1ocnvd 6129* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1od 6130* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1ocnv2d 6131* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1o2d 6132* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1opw2 6133* |
A one-to-one mapping induces a one-to-one mapping on power sets. This
version of f1opw 6134 avoids the Axiom of Replacement.
(Contributed by
Mario Carneiro, 26-Jun-2015.)
|
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵)
& ⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) & ⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) ⇒ ⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | f1opw 6134* |
A one-to-one mapping induces a one-to-one mapping on power sets.
(Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario
Carneiro, 26-Jun-2015.)
|
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | suppssfv 6135* |
Formula building theorem for support restriction, on a function which
preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | suppssov1 6136* |
Formula building theorem for support restrictions: operator with left
annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| 2.6.13 Function operation
|
| |
| Syntax | cof 6137 |
Extend class notation to include mapping of an operation to a function
operation.
|
| class ∘𝑓 𝑅 |
| |
| Syntax | cofr 6138 |
Extend class notation to include mapping of a binary relation to a
function relation.
|
| class ∘𝑟 𝑅 |
| |
| Definition | df-of 6139* |
Define the function operation map. The definition is designed so that
if 𝑅 is a binary operation, then ∘𝑓 𝑅 is the analogous operation
on functions which corresponds to applying 𝑅 pointwise to the values
of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
|
| ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| |
| Definition | df-ofr 6140* |
Define the function relation map. The definition is designed so that if
𝑅 is a binary relation, then ∘𝑓 𝑅 is the analogous relation on
functions which is true when each element of the left function relates
to the corresponding element of the right function. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| |
| Theorem | ofeqd 6141 |
Equality theorem for function operation, deduction form. (Contributed
by SN, 11-Nov-2024.)
|
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofeq 6142 |
Equality theorem for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofreq 6143 |
Equality theorem for function relation. (Contributed by Mario Carneiro,
28-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟
𝑆) |
| |
| Theorem | ofexg 6144 |
A function operation restricted to a set is a set. (Contributed by NM,
28-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
| |
| Theorem | nfof 6145 |
Hypothesis builder for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑓
𝑅 |
| |
| Theorem | nfofr 6146 |
Hypothesis builder for function relation. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑟
𝑅 |
| |
| Theorem | offval 6147* |
Value of an operation applied to two functions. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| |
| Theorem | ofrfval 6148* |
Value of a relation applied to two functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| |
| Theorem | ofvalg 6149 |
Evaluate a function operation at a point. (Contributed by Mario
Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| |
| Theorem | ofrval 6150 |
Exhibit a function relation at a point. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| |
| Theorem | ofmresval 6151 |
Value of a restriction of the function operation map. (Contributed by
NM, 20-Oct-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
| |
| Theorem | off 6152* |
The function operation produces a function. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
| |
| Theorem | offeq 6153* |
Convert an identity of the operation to the analogous identity on
the function operation. (Contributed by Jim Kingdon,
26-Nov-2023.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶
& ⊢ (𝜑 → 𝐻:𝐶⟶𝑈)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| |
| Theorem | ofres 6154 |
Restrict the operands of a function operation to the same domain as that
of the operation itself. (Contributed by Mario Carneiro,
15-Sep-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| |
| Theorem | offval2 6155* |
The function operation expressed as a mapping. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| |
| Theorem | ofrfval2 6156* |
The function relation acting on maps. (Contributed by Mario Carneiro,
20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) |
| |
| Theorem | suppssof1 6157* |
Formula building theorem for support restrictions: vector operation with
left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ (𝜑 → 𝐴:𝐷⟶𝑉)
& ⊢ (𝜑 → 𝐵:𝐷⟶𝑅)
& ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | ofco 6158 |
The composition of a function operation with another function.
(Contributed by Mario Carneiro, 19-Dec-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐻:𝐷⟶𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) |
| |
| Theorem | offveqb 6159* |
Equivalent expressions for equality with a function operation.
(Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro,
5-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) ⇒ ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| |
| Theorem | offveq 6160* |
Convert an identity of the operation to the analogous identity on the
function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| |
| Theorem | ofc1g 6161 |
Left operation by a constant. (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| |
| Theorem | ofc2g 6162 |
Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
| |
| Theorem | ofc12 6163 |
Function operation on two constant functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
| |
| Theorem | caofref 6164* |
Transfer a reflexive law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
| |
| Theorem | caofinvl 6165* |
Transfer a left inverse law to the function operation. (Contributed
by NM, 22-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝑁:𝑆⟶𝑆)
& ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |
| |
| Theorem | caofid0l 6166* |
Transfer a left identity law to the function operation.
(Contributed by NM, 21-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝑥) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = 𝐹) |
| |
| Theorem | caofid0r 6167* |
Transfer a right identity law to the function operation.
(Contributed by NM, 21-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅(𝐴 × {𝐵})) = 𝐹) |
| |
| Theorem | caofid1 6168* |
Transfer a right absorption law to the function operation.
(Contributed by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
| |
| Theorem | caofid2 6169* |
Transfer a right absorption law to the function operation.
(Contributed by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| |
| Theorem | caofcom 6170* |
Transfer a commutative law to the function operation. (Contributed by
Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
| |
| Theorem | caofrss 6171* |
Transfer a relation subset law to the function relation. (Contributed
by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
| |
| Theorem | caoftrn 6172* |
Transfer a transitivity law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) → 𝐹 ∘𝑟 𝑈𝐻)) |
| |
| Theorem | caofdig 6173* |
Transfer a distributive law to the function operation. (Contributed
by Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝐾)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
| |
| 2.6.14 Functions (continued)
|
| |
| Theorem | resfunexgALT 6174 |
The restriction of a function to a set exists. Compare Proposition 6.17
of [TakeutiZaring] p. 28. This
version has a shorter proof than
resfunexg 5786 but requires ax-pow 4208 and ax-un 4469. (Contributed by NM,
7-Apr-1995.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| |
| Theorem | cofunexg 6175 |
Existence of a composition when the first member is a function.
(Contributed by NM, 8-Oct-2007.)
|
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
| |
| Theorem | cofunex2g 6176 |
Existence of a composition when the second member is one-to-one.
(Contributed by NM, 8-Oct-2007.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
| |
| Theorem | fnexALT 6177 |
If the domain of a function is a set, the function is a set. Theorem
6.16(1) of [TakeutiZaring] p. 28.
This theorem is derived using the Axiom
of Replacement in the form of funimaexg 5343. This version of fnex 5787
uses
ax-pow 4208 and ax-un 4469, whereas fnex 5787
does not. (Contributed by NM,
14-Aug-1994.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| |
| Theorem | funexw 6178 |
Weak version of funex 5788 that holds without ax-coll 4149. If the domain and
codomain of a function exist, so does the function. (Contributed by Rohan
Ridenour, 13-Aug-2023.)
|
| ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) |
| |
| Theorem | mptexw 6179* |
Weak version of mptex 5791 that holds without ax-coll 4149. If the domain
and codomain of a function given by maps-to notation are sets, the
function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| |
| Theorem | funrnex 6180 |
If the domain of a function exists, so does its range. Part of Theorem
4.15(v) of [Monk1] p. 46. This theorem is
derived using the Axiom of
Replacement in the form of funex 5788. (Contributed by NM, 11-Nov-1995.)
|
| ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) |
| |
| Theorem | focdmex 6181 |
If the domain of an onto function exists, so does its codomain.
(Contributed by NM, 23-Jul-2004.)
|
| ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| |
| Theorem | f1dmex 6182 |
If the codomain of a one-to-one function exists, so does its domain. This
can be thought of as a form of the Axiom of Replacement. (Contributed by
NM, 4-Sep-2004.)
|
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| |
| Theorem | abrexex 6183* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in the class expression
substituted for 𝐵, which can be thought of as 𝐵(𝑥). This
simple-looking theorem is actually quite powerful and appears to involve
the Axiom of Replacement in an intrinsic way, as can be seen by tracing
back through the path mptexg 5790, funex 5788, fnex 5787, resfunexg 5786, and
funimaexg 5343. See also abrexex2 6190. (Contributed by NM, 16-Oct-2003.)
(Proof shortened by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| |
| Theorem | abrexexg 6184* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in 𝐵. The antecedent assures
us that 𝐴 is a set. (Contributed by NM,
3-Nov-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| |
| Theorem | iunexg 6185* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| |
| Theorem | abrexex2g 6186* |
Existence of an existentially restricted class abstraction.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
| |
| Theorem | opabex3d 6187* |
Existence of an ordered pair abstraction, deduction version.
(Contributed by Alexander van der Vekens, 19-Oct-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) |
| |
| Theorem | opabex3 6188* |
Existence of an ordered pair abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| |
| Theorem | iunex 6189* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in the class expression substituted for 𝐵, which can be
read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| |
| Theorem | abrexex2 6190* |
Existence of an existentially restricted class abstraction. 𝜑 is
normally has free-variable parameters 𝑥 and 𝑦. See
also
abrexex 6183. (Contributed by NM, 12-Sep-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| |
| Theorem | abexssex 6191* |
Existence of a class abstraction with an existentially quantified
expression. Both 𝑥 and 𝑦 can be free in 𝜑.
(Contributed
by NM, 29-Jul-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
| |
| Theorem | abexex 6192* |
A condition where a class builder continues to exist after its wff is
existentially quantified. (Contributed by NM, 4-Mar-2007.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴)
& ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| |
| Theorem | oprabexd 6193* |
Existence of an operator abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓)
& ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) |
| |
| Theorem | oprabex 6194* |
Existence of an operation class abstraction. (Contributed by NM,
19-Oct-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑)
& ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V |
| |
| Theorem | oprabex3 6195* |
Existence of an operation class abstraction (special case).
(Contributed by NM, 19-Oct-2004.)
|
| ⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V |
| |
| Theorem | oprabrexex2 6196* |
Existence of an existentially restricted operation abstraction.
(Contributed by Jeff Madsen, 11-Jun-2010.)
|
| ⊢ 𝐴 ∈ V & ⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V |
| |
| Theorem | ab2rexex 6197* |
Existence of a class abstraction of existentially restricted sets.
Variables 𝑥 and 𝑦 are normally
free-variable parameters in the
class expression substituted for 𝐶, which can be thought of as
𝐶(𝑥, 𝑦). See comments for abrexex 6183. (Contributed by NM,
20-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| |
| Theorem | ab2rexex2 6198* |
Existence of an existentially restricted class abstraction. 𝜑
normally has free-variable parameters 𝑥, 𝑦, and 𝑧.
Compare abrexex2 6190. (Contributed by NM, 20-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
| |
| Theorem | xpexgALT 6199 |
The cross product of two sets is a set. Proposition 6.2 of
[TakeutiZaring] p. 23. This
version is proven using Replacement; see
xpexg 4778 for a version that uses the Power Set axiom
instead.
(Contributed by Mario Carneiro, 20-May-2013.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| |
| Theorem | offval3 6200* |
General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on
functionality
of 𝐹 and 𝐺. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |