Theorem List for Intuitionistic Logic Explorer - 6101-6200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | caov31d 6101* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
|
Theorem | caov13d 6102* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴))) |
|
Theorem | caov4d 6103* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
|
Theorem | caov411d 6104* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
|
Theorem | caov42d 6105* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))) |
|
Theorem | caov32 6106* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
|
Theorem | caov12 6107* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
|
Theorem | caov31 6108* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
|
Theorem | caov13 6109* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
|
Theorem | caovdilemd 6110* |
Lemma used by real number construction. (Contributed by Jim Kingdon,
16-Sep-2019.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆) ⇒ ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
|
Theorem | caovlem2d 6111* |
Rearrangement of expression involving multiplication (𝐺) and
addition (𝐹). (Contributed by Jim Kingdon,
3-Jan-2020.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆)
& ⊢ (𝜑 → 𝑅 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |
|
Theorem | caovimo 6112* |
Uniqueness of inverse element in commutative, associative operation with
identity. The identity element is 𝐵. (Contributed by Jim Kingdon,
18-Sep-2019.)
|
⊢ 𝐵 ∈ 𝑆
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) ⇒ ⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) |
|
2.6.12 Maps-to notation
|
|
Theorem | elmpocl 6113* |
If a two-parameter class is inhabited, constrain the implicit pair.
(Contributed by Stefan O'Rear, 7-Mar-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
|
Theorem | elmpocl1 6114* |
If a two-parameter class is inhabited, the first argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
|
Theorem | elmpocl2 6115* |
If a two-parameter class is inhabited, the second argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
|
Theorem | elovmpod 6116* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.) Variant of elovmpo 6117 in deduction form. (Revised by AV,
20-Apr-2025.)
|
⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
|
Theorem | elovmpo 6117* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.)
|
⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ 𝐶 ∈ V & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) ⇒ ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
|
Theorem | elovmporab 6118* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element.
(Contributed by Alexander van der Vekens, 15-Jul-2018.)
|
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ 𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀)) |
|
Theorem | elovmporab1w 6119* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element. Here,
the base set of the class abstraction depends on the first operand.
(Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG,
26-Jan-2024.)
|
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
|
Theorem | f1ocnvd 6120* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
|
Theorem | f1od 6121* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
|
Theorem | f1ocnv2d 6122* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
|
Theorem | f1o2d 6123* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
|
Theorem | f1opw2 6124* |
A one-to-one mapping induces a one-to-one mapping on power sets. This
version of f1opw 6125 avoids the Axiom of Replacement.
(Contributed by
Mario Carneiro, 26-Jun-2015.)
|
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵)
& ⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) & ⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) ⇒ ⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
|
Theorem | f1opw 6125* |
A one-to-one mapping induces a one-to-one mapping on power sets.
(Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario
Carneiro, 26-Jun-2015.)
|
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
|
Theorem | suppssfv 6126* |
Formula building theorem for support restriction, on a function which
preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
|
Theorem | suppssov1 6127* |
Formula building theorem for support restrictions: operator with left
annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
|
2.6.13 Function operation
|
|
Syntax | cof 6128 |
Extend class notation to include mapping of an operation to a function
operation.
|
class ∘𝑓 𝑅 |
|
Syntax | cofr 6129 |
Extend class notation to include mapping of a binary relation to a
function relation.
|
class ∘𝑟 𝑅 |
|
Definition | df-of 6130* |
Define the function operation map. The definition is designed so that
if 𝑅 is a binary operation, then ∘𝑓 𝑅 is the analogous operation
on functions which corresponds to applying 𝑅 pointwise to the values
of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
|
⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
|
Definition | df-ofr 6131* |
Define the function relation map. The definition is designed so that if
𝑅 is a binary relation, then ∘𝑓 𝑅 is the analogous relation on
functions which is true when each element of the left function relates
to the corresponding element of the right function. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
|
Theorem | ofeqd 6132 |
Equality theorem for function operation, deduction form. (Contributed
by SN, 11-Nov-2024.)
|
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
|
Theorem | ofeq 6133 |
Equality theorem for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
|
Theorem | ofreq 6134 |
Equality theorem for function relation. (Contributed by Mario Carneiro,
28-Jul-2014.)
|
⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟
𝑆) |
|
Theorem | ofexg 6135 |
A function operation restricted to a set is a set. (Contributed by NM,
28-Jul-2014.)
|
⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
|
Theorem | nfof 6136 |
Hypothesis builder for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑓
𝑅 |
|
Theorem | nfofr 6137 |
Hypothesis builder for function relation. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑟
𝑅 |
|
Theorem | offval 6138* |
Value of an operation applied to two functions. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
|
Theorem | ofrfval 6139* |
Value of a relation applied to two functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
|
Theorem | ofvalg 6140 |
Evaluate a function operation at a point. (Contributed by Mario
Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
|
Theorem | ofrval 6141 |
Exhibit a function relation at a point. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
|
Theorem | ofmresval 6142 |
Value of a restriction of the function operation map. (Contributed by
NM, 20-Oct-2014.)
|
⊢ (𝜑 → 𝐹 ∈ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
|
Theorem | off 6143* |
The function operation produces a function. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
|
Theorem | offeq 6144* |
Convert an identity of the operation to the analogous identity on
the function operation. (Contributed by Jim Kingdon,
26-Nov-2023.)
|
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶
& ⊢ (𝜑 → 𝐻:𝐶⟶𝑈)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
|
Theorem | ofres 6145 |
Restrict the operands of a function operation to the same domain as that
of the operation itself. (Contributed by Mario Carneiro,
15-Sep-2014.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
|
Theorem | offval2 6146* |
The function operation expressed as a mapping. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
|
Theorem | ofrfval2 6147* |
The function relation acting on maps. (Contributed by Mario Carneiro,
20-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) |
|
Theorem | suppssof1 6148* |
Formula building theorem for support restrictions: vector operation with
left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ (𝜑 → 𝐴:𝐷⟶𝑉)
& ⊢ (𝜑 → 𝐵:𝐷⟶𝑅)
& ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
|
Theorem | ofco 6149 |
The composition of a function operation with another function.
(Contributed by Mario Carneiro, 19-Dec-2014.)
|
⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐻:𝐷⟶𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) |
|
Theorem | offveqb 6150* |
Equivalent expressions for equality with a function operation.
(Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro,
5-Dec-2016.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) ⇒ ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
|
Theorem | ofc1g 6151 |
Left operation by a constant. (Contributed by Mario Carneiro,
24-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
|
Theorem | ofc2g 6152 |
Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
|
Theorem | ofc12 6153 |
Function operation on two constant functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
|
Theorem | caofref 6154* |
Transfer a reflexive law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
|
Theorem | caofinvl 6155* |
Transfer a left inverse law to the function operation. (Contributed
by NM, 22-Oct-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝑁:𝑆⟶𝑆)
& ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |
|
Theorem | caofcom 6156* |
Transfer a commutative law to the function operation. (Contributed by
Mario Carneiro, 26-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
|
Theorem | caofrss 6157* |
Transfer a relation subset law to the function relation. (Contributed
by Mario Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
|
Theorem | caoftrn 6158* |
Transfer a transitivity law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) → 𝐹 ∘𝑟 𝑈𝐻)) |
|
Theorem | caofdig 6159* |
Transfer a distributive law to the function operation. (Contributed
by Mario Carneiro, 26-Jul-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝐾)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
|
2.6.14 Functions (continued)
|
|
Theorem | resfunexgALT 6160 |
The restriction of a function to a set exists. Compare Proposition 6.17
of [TakeutiZaring] p. 28. This
version has a shorter proof than
resfunexg 5779 but requires ax-pow 4203 and ax-un 4464. (Contributed by NM,
7-Apr-1995.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
|
Theorem | cofunexg 6161 |
Existence of a composition when the first member is a function.
(Contributed by NM, 8-Oct-2007.)
|
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
|
Theorem | cofunex2g 6162 |
Existence of a composition when the second member is one-to-one.
(Contributed by NM, 8-Oct-2007.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
|
Theorem | fnexALT 6163 |
If the domain of a function is a set, the function is a set. Theorem
6.16(1) of [TakeutiZaring] p. 28.
This theorem is derived using the Axiom
of Replacement in the form of funimaexg 5338. This version of fnex 5780
uses
ax-pow 4203 and ax-un 4464, whereas fnex 5780
does not. (Contributed by NM,
14-Aug-1994.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
|
Theorem | funexw 6164 |
Weak version of funex 5781 that holds without ax-coll 4144. If the domain and
codomain of a function exist, so does the function. (Contributed by Rohan
Ridenour, 13-Aug-2023.)
|
⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) |
|
Theorem | mptexw 6165* |
Weak version of mptex 5784 that holds without ax-coll 4144. If the domain
and codomain of a function given by maps-to notation are sets, the
function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
|
Theorem | funrnex 6166 |
If the domain of a function exists, so does its range. Part of Theorem
4.15(v) of [Monk1] p. 46. This theorem is
derived using the Axiom of
Replacement in the form of funex 5781. (Contributed by NM, 11-Nov-1995.)
|
⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) |
|
Theorem | focdmex 6167 |
If the domain of an onto function exists, so does its codomain.
(Contributed by NM, 23-Jul-2004.)
|
⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
|
Theorem | f1dmex 6168 |
If the codomain of a one-to-one function exists, so does its domain. This
can be thought of as a form of the Axiom of Replacement. (Contributed by
NM, 4-Sep-2004.)
|
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
|
Theorem | abrexex 6169* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in the class expression
substituted for 𝐵, which can be thought of as 𝐵(𝑥). This
simple-looking theorem is actually quite powerful and appears to involve
the Axiom of Replacement in an intrinsic way, as can be seen by tracing
back through the path mptexg 5783, funex 5781, fnex 5780, resfunexg 5779, and
funimaexg 5338. See also abrexex2 6176. (Contributed by NM, 16-Oct-2003.)
(Proof shortened by Mario Carneiro, 31-Aug-2015.)
|
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
|
Theorem | abrexexg 6170* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in 𝐵. The antecedent assures
us that 𝐴 is a set. (Contributed by NM,
3-Nov-2003.)
|
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
|
Theorem | iunexg 6171* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
|
Theorem | abrexex2g 6172* |
Existence of an existentially restricted class abstraction.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
|
Theorem | opabex3d 6173* |
Existence of an ordered pair abstraction, deduction version.
(Contributed by Alexander van der Vekens, 19-Oct-2017.)
|
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) |
|
Theorem | opabex3 6174* |
Existence of an ordered pair abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
|
Theorem | iunex 6175* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in the class expression substituted for 𝐵, which can be
read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
|
Theorem | abrexex2 6176* |
Existence of an existentially restricted class abstraction. 𝜑 is
normally has free-variable parameters 𝑥 and 𝑦. See
also
abrexex 6169. (Contributed by NM, 12-Sep-2004.)
|
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
|
Theorem | abexssex 6177* |
Existence of a class abstraction with an existentially quantified
expression. Both 𝑥 and 𝑦 can be free in 𝜑.
(Contributed
by NM, 29-Jul-2006.)
|
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
|
Theorem | abexex 6178* |
A condition where a class builder continues to exist after its wff is
existentially quantified. (Contributed by NM, 4-Mar-2007.)
|
⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴)
& ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
|
Theorem | oprabexd 6179* |
Existence of an operator abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓)
& ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) |
|
Theorem | oprabex 6180* |
Existence of an operation class abstraction. (Contributed by NM,
19-Oct-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑)
& ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V |
|
Theorem | oprabex3 6181* |
Existence of an operation class abstraction (special case).
(Contributed by NM, 19-Oct-2004.)
|
⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V |
|
Theorem | oprabrexex2 6182* |
Existence of an existentially restricted operation abstraction.
(Contributed by Jeff Madsen, 11-Jun-2010.)
|
⊢ 𝐴 ∈ V & ⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V |
|
Theorem | ab2rexex 6183* |
Existence of a class abstraction of existentially restricted sets.
Variables 𝑥 and 𝑦 are normally
free-variable parameters in the
class expression substituted for 𝐶, which can be thought of as
𝐶(𝑥, 𝑦). See comments for abrexex 6169. (Contributed by NM,
20-Sep-2011.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
|
Theorem | ab2rexex2 6184* |
Existence of an existentially restricted class abstraction. 𝜑
normally has free-variable parameters 𝑥, 𝑦, and 𝑧.
Compare abrexex2 6176. (Contributed by NM, 20-Sep-2011.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
|
Theorem | xpexgALT 6185 |
The cross product of two sets is a set. Proposition 6.2 of
[TakeutiZaring] p. 23. This
version is proven using Replacement; see
xpexg 4773 for a version that uses the Power Set axiom
instead.
(Contributed by Mario Carneiro, 20-May-2013.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
|
Theorem | offval3 6186* |
General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on
functionality
of 𝐹 and 𝐺. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
|
Theorem | offres 6187 |
Pointwise combination commutes with restriction. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘𝑓 𝑅(𝐺 ↾ 𝐷))) |
|
Theorem | ofmres 6188* |
Equivalent expressions for a restriction of the function operation map.
Unlike ∘𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can
be a set by ofmresex 6189, allowing it to be used as a function or
structure argument. By ofmresval 6142, the restricted operation map
values are the same as the original values, allowing theorems for
∘𝑓 𝑅 to be reused. (Contributed by NM,
20-Oct-2014.)
|
⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
|
Theorem | ofmresex 6189 |
Existence of a restriction of the function operation map. (Contributed
by NM, 20-Oct-2014.)
|
⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) |
|
Theorem | uchoice 6190* |
Principle of unique choice. This is also called non-choice. The name
choice results in its similarity to something like acfun 7267 (with the key
difference being the change of ∃ to ∃!) but unique choice in
fact follows from the axiom of collection and our other axioms. This is
somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is
better described by the paragraph at the end of Section 3.9 which starts
"A similar issue arises in set-theoretic mathematics".
(Contributed by
Jim Kingdon, 13-Sep-2025.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |
|
2.6.15 First and second members of an ordered
pair
|
|
Syntax | c1st 6191 |
Extend the definition of a class to include the first member an ordered
pair function.
|
class 1st |
|
Syntax | c2nd 6192 |
Extend the definition of a class to include the second member an ordered
pair function.
|
class 2nd |
|
Definition | df-1st 6193 |
Define a function that extracts the first member, or abscissa, of an
ordered pair. Theorem op1st 6199 proves that it does this. For example,
(1st ‘〈 3 , 4 〉) = 3 . Equivalent to Definition 5.13 (i) of
[Monk1] p. 52 (compare op1sta 5147 and op1stb 4509). The notation is the same
as Monk's. (Contributed by NM, 9-Oct-2004.)
|
⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
|
Definition | df-2nd 6194 |
Define a function that extracts the second member, or ordinate, of an
ordered pair. Theorem op2nd 6200 proves that it does this. For example,
(2nd ‘〈 3 , 4 〉) = 4 . Equivalent to Definition 5.13 (ii)
of [Monk1] p. 52 (compare op2nda 5150 and op2ndb 5149). The notation is the
same as Monk's. (Contributed by NM, 9-Oct-2004.)
|
⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
|
Theorem | 1stvalg 6195 |
The value of the function that extracts the first member of an ordered
pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
⊢ (𝐴 ∈ V → (1st
‘𝐴) = ∪ dom {𝐴}) |
|
Theorem | 2ndvalg 6196 |
The value of the function that extracts the second member of an ordered
pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
⊢ (𝐴 ∈ V → (2nd
‘𝐴) = ∪ ran {𝐴}) |
|
Theorem | 1st0 6197 |
The value of the first-member function at the empty set. (Contributed by
NM, 23-Apr-2007.)
|
⊢ (1st ‘∅) =
∅ |
|
Theorem | 2nd0 6198 |
The value of the second-member function at the empty set. (Contributed by
NM, 23-Apr-2007.)
|
⊢ (2nd ‘∅) =
∅ |
|
Theorem | op1st 6199 |
Extract the first member of an ordered pair. (Contributed by NM,
5-Oct-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (1st
‘〈𝐴, 𝐵〉) = 𝐴 |
|
Theorem | op2nd 6200 |
Extract the second member of an ordered pair. (Contributed by NM,
5-Oct-2004.)
|
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (2nd
‘〈𝐴, 𝐵〉) = 𝐵 |