HomeHome Intuitionistic Logic Explorer
Theorem List (p. 62 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-of 6101* Define the function operation map. The definition is designed so that if 𝑅 is a binary operation, then βˆ˜π‘“ 𝑅 is the analogous operation on functions which corresponds to applying 𝑅 pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
βˆ˜π‘“ 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯))))
 
Definitiondf-ofr 6102* Define the function relation map. The definition is designed so that if 𝑅 is a binary relation, then βˆ˜π‘“ 𝑅 is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.)
βˆ˜π‘Ÿ 𝑅 = {βŸ¨π‘“, π‘”βŸ© ∣ βˆ€π‘₯ ∈ (dom 𝑓 ∩ dom 𝑔)(π‘“β€˜π‘₯)𝑅(π‘”β€˜π‘₯)}
 
Theoremofeq 6103 Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
(𝑅 = 𝑆 β†’ βˆ˜π‘“ 𝑅 = βˆ˜π‘“ 𝑆)
 
Theoremofreq 6104 Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(𝑅 = 𝑆 β†’ βˆ˜π‘Ÿ 𝑅 = βˆ˜π‘Ÿ 𝑆)
 
Theoremofexg 6105 A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
(𝐴 ∈ 𝑉 β†’ ( βˆ˜π‘“ 𝑅 β†Ύ 𝐴) ∈ V)
 
Theoremnfof 6106 Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
β„²π‘₯𝑅    β‡’   β„²π‘₯ βˆ˜π‘“ 𝑅
 
Theoremnfofr 6107 Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
β„²π‘₯𝑅    β‡’   β„²π‘₯ βˆ˜π‘Ÿ 𝑅
 
Theoremoffval 6108* Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝑆    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = 𝐢)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πΊβ€˜π‘₯) = 𝐷)    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = (π‘₯ ∈ 𝑆 ↦ (𝐢𝑅𝐷)))
 
Theoremofrfval 6109* Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝑆    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = 𝐢)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πΊβ€˜π‘₯) = 𝐷)    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘Ÿ 𝑅𝐺 ↔ βˆ€π‘₯ ∈ 𝑆 𝐢𝑅𝐷))
 
Theoremofvalg 6110 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝑆    &   ((πœ‘ ∧ 𝑋 ∈ 𝐴) β†’ (πΉβ€˜π‘‹) = 𝐢)    &   ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΊβ€˜π‘‹) = 𝐷)    &   ((πœ‘ ∧ 𝑋 ∈ 𝑆) β†’ (𝐢𝑅𝐷) ∈ π‘ˆ)    β‡’   ((πœ‘ ∧ 𝑋 ∈ 𝑆) β†’ ((𝐹 βˆ˜π‘“ 𝑅𝐺)β€˜π‘‹) = (𝐢𝑅𝐷))
 
Theoremofrval 6111 Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝑆    &   ((πœ‘ ∧ 𝑋 ∈ 𝐴) β†’ (πΉβ€˜π‘‹) = 𝐢)    &   ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΊβ€˜π‘‹) = 𝐷)    β‡’   ((πœ‘ ∧ 𝐹 βˆ˜π‘Ÿ 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) β†’ 𝐢𝑅𝐷)
 
Theoremofmresval 6112 Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
(πœ‘ β†’ 𝐹 ∈ 𝐴)    &   (πœ‘ β†’ 𝐺 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝐹( βˆ˜π‘“ 𝑅 β†Ύ (𝐴 Γ— 𝐡))𝐺) = (𝐹 βˆ˜π‘“ 𝑅𝐺))
 
Theoremoff 6113* The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) β†’ (π‘₯𝑅𝑦) ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΅βŸΆπ‘‡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝐢    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺):πΆβŸΆπ‘ˆ)
 
Theoremoffeq 6114* Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) β†’ (π‘₯𝑅𝑦) ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΅βŸΆπ‘‡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝐢    &   (πœ‘ β†’ 𝐻:πΆβŸΆπ‘ˆ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = 𝐷)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (πΊβ€˜π‘₯) = 𝐸)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐢) β†’ (𝐷𝑅𝐸) = (π»β€˜π‘₯))    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = 𝐻)
 
Theoremofres 6115 Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (𝐴 ∩ 𝐡) = 𝐢    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = ((𝐹 β†Ύ 𝐢) βˆ˜π‘“ 𝑅(𝐺 β†Ύ 𝐢)))
 
Theoremoffval2 6116* The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ π‘Š)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐢 ∈ 𝑋)    &   (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐴 ↦ 𝐡))    &   (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐴 ↦ 𝐢))    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = (π‘₯ ∈ 𝐴 ↦ (𝐡𝑅𝐢)))
 
Theoremofrfval2 6117* The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ π‘Š)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐢 ∈ 𝑋)    &   (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐴 ↦ 𝐡))    &   (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐴 ↦ 𝐢))    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘Ÿ 𝑅𝐺 ↔ βˆ€π‘₯ ∈ 𝐴 𝐡𝑅𝐢))
 
Theoremsuppssof1 6118* Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
(πœ‘ β†’ (◑𝐴 β€œ (V βˆ– {π‘Œ})) βŠ† 𝐿)    &   ((πœ‘ ∧ 𝑣 ∈ 𝑅) β†’ (π‘Œπ‘‚π‘£) = 𝑍)    &   (πœ‘ β†’ 𝐴:π·βŸΆπ‘‰)    &   (πœ‘ β†’ 𝐡:π·βŸΆπ‘…)    &   (πœ‘ β†’ 𝐷 ∈ π‘Š)    β‡’   (πœ‘ β†’ (β—‘(𝐴 βˆ˜π‘“ 𝑂𝐡) β€œ (V βˆ– {𝑍})) βŠ† 𝐿)
 
Theoremofco 6119 The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
(πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐡)    &   (πœ‘ β†’ 𝐻:𝐷⟢𝐢)    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐷 ∈ 𝑋)    &   (𝐴 ∩ 𝐡) = 𝐢    β‡’   (πœ‘ β†’ ((𝐹 βˆ˜π‘“ 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) βˆ˜π‘“ 𝑅(𝐺 ∘ 𝐻)))
 
Theoremoffveqb 6120* Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 Fn 𝐴)    &   (πœ‘ β†’ 𝐺 Fn 𝐴)    &   (πœ‘ β†’ 𝐻 Fn 𝐴)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = 𝐡)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (πΊβ€˜π‘₯) = 𝐢)    β‡’   (πœ‘ β†’ (𝐻 = (𝐹 βˆ˜π‘“ 𝑅𝐺) ↔ βˆ€π‘₯ ∈ 𝐴 (π»β€˜π‘₯) = (𝐡𝑅𝐢)))
 
Theoremofc12 6121 Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐢 ∈ 𝑋)    β‡’   (πœ‘ β†’ ((𝐴 Γ— {𝐡}) βˆ˜π‘“ 𝑅(𝐴 Γ— {𝐢})) = (𝐴 Γ— {(𝐡𝑅𝐢)}))
 
Theoremcaofref 6122* Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ π‘₯𝑅π‘₯)    β‡’   (πœ‘ β†’ 𝐹 βˆ˜π‘Ÿ 𝑅𝐹)
 
Theoremcaofinvl 6123* Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝑁:π‘†βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺 = (𝑣 ∈ 𝐴 ↦ (π‘β€˜(πΉβ€˜π‘£))))    &   ((πœ‘ ∧ π‘₯ ∈ 𝑆) β†’ ((π‘β€˜π‘₯)𝑅π‘₯) = 𝐡)    β‡’   (πœ‘ β†’ (𝐺 βˆ˜π‘“ 𝑅𝐹) = (𝐴 Γ— {𝐡}))
 
Theoremcaofcom 6124* Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΄βŸΆπ‘†)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯𝑅𝑦) = (𝑦𝑅π‘₯))    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = (𝐺 βˆ˜π‘“ 𝑅𝐹))
 
Theoremcaofrss 6125* Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΄βŸΆπ‘†)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯𝑅𝑦 β†’ π‘₯𝑇𝑦))    β‡’   (πœ‘ β†’ (𝐹 βˆ˜π‘Ÿ 𝑅𝐺 β†’ 𝐹 βˆ˜π‘Ÿ 𝑇𝐺))
 
Theoremcaoftrn 6126* Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐺:π΄βŸΆπ‘†)    &   (πœ‘ β†’ 𝐻:π΄βŸΆπ‘†)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) β†’ ((π‘₯𝑅𝑦 ∧ 𝑦𝑇𝑧) β†’ π‘₯π‘ˆπ‘§))    β‡’   (πœ‘ β†’ ((𝐹 βˆ˜π‘Ÿ 𝑅𝐺 ∧ 𝐺 βˆ˜π‘Ÿ 𝑇𝐻) β†’ 𝐹 βˆ˜π‘Ÿ π‘ˆπ»))
 
2.6.14  Functions (continued)
 
TheoremresfunexgALT 6127 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5753 but requires ax-pow 4189 and ax-un 4448. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
((Fun 𝐴 ∧ 𝐡 ∈ 𝐢) β†’ (𝐴 β†Ύ 𝐡) ∈ V)
 
Theoremcofunexg 6128 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
((Fun 𝐴 ∧ 𝐡 ∈ 𝐢) β†’ (𝐴 ∘ 𝐡) ∈ V)
 
Theoremcofunex2g 6129 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
((𝐴 ∈ 𝑉 ∧ Fun ◑𝐡) β†’ (𝐴 ∘ 𝐡) ∈ V)
 
TheoremfnexALT 6130 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5315. This version of fnex 5754 uses ax-pow 4189 and ax-un 4448, whereas fnex 5754 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐡) β†’ 𝐹 ∈ V)
 
Theoremfunexw 6131 Weak version of funex 5755 that holds without ax-coll 4133. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐡 ∧ ran 𝐹 ∈ 𝐢) β†’ 𝐹 ∈ V)
 
Theoremmptexw 6132* Weak version of mptex 5758 that holds without ax-coll 4133. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝐴 ∈ V    &   πΆ ∈ V    &   βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝐢    β‡’   (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ V
 
Theoremfunrnex 6133 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5755. (Contributed by NM, 11-Nov-1995.)
(dom 𝐹 ∈ 𝐡 β†’ (Fun 𝐹 β†’ ran 𝐹 ∈ V))
 
Theoremfocdmex 6134 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
(𝐴 ∈ 𝐢 β†’ (𝐹:𝐴–onto→𝐡 β†’ 𝐡 ∈ V))
 
Theoremf1dmex 6135 If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
((𝐹:𝐴–1-1→𝐡 ∧ 𝐡 ∈ 𝐢) β†’ 𝐴 ∈ V)
 
Theoremabrexex 6136* Existence of a class abstraction of existentially restricted sets. π‘₯ is normally a free-variable parameter in the class expression substituted for 𝐡, which can be thought of as 𝐡(π‘₯). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5757, funex 5755, fnex 5754, resfunexg 5753, and funimaexg 5315. See also abrexex2 6143. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    β‡’   {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = 𝐡} ∈ V
 
Theoremabrexexg 6137* Existence of a class abstraction of existentially restricted sets. π‘₯ is normally a free-variable parameter in 𝐡. The antecedent assures us that 𝐴 is a set. (Contributed by NM, 3-Nov-2003.)
(𝐴 ∈ 𝑉 β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑦 = 𝐡} ∈ V)
 
Theoremiunexg 6138* The existence of an indexed union. π‘₯ is normally a free-variable parameter in 𝐡. (Contributed by NM, 23-Mar-2006.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ π‘Š) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ V)
 
Theoremabrexex2g 6139* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 {𝑦 ∣ πœ‘} ∈ π‘Š) β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 πœ‘} ∈ V)
 
Theoremopabex3d 6140* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
(πœ‘ β†’ 𝐴 ∈ V)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ {𝑦 ∣ πœ“} ∈ V)    β‡’   (πœ‘ β†’ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ πœ“)} ∈ V)
 
Theoremopabex3 6141* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ V    &   (π‘₯ ∈ 𝐴 β†’ {𝑦 ∣ πœ‘} ∈ V)    β‡’   {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐴 ∧ πœ‘)} ∈ V
 
Theoremiunex 6142* The existence of an indexed union. π‘₯ is normally a free-variable parameter in the class expression substituted for 𝐡, which can be read informally as 𝐡(π‘₯). (Contributed by NM, 13-Oct-2003.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ V
 
Theoremabrexex2 6143* Existence of an existentially restricted class abstraction. πœ‘ is normally has free-variable parameters π‘₯ and 𝑦. See also abrexex 6136. (Contributed by NM, 12-Sep-2004.)
𝐴 ∈ V    &   {𝑦 ∣ πœ‘} ∈ V    β‡’   {𝑦 ∣ βˆƒπ‘₯ ∈ 𝐴 πœ‘} ∈ V
 
Theoremabexssex 6144* Existence of a class abstraction with an existentially quantified expression. Both π‘₯ and 𝑦 can be free in πœ‘. (Contributed by NM, 29-Jul-2006.)
𝐴 ∈ V    &   {𝑦 ∣ πœ‘} ∈ V    β‡’   {𝑦 ∣ βˆƒπ‘₯(π‘₯ βŠ† 𝐴 ∧ πœ‘)} ∈ V
 
Theoremabexex 6145* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
𝐴 ∈ V    &   (πœ‘ β†’ π‘₯ ∈ 𝐴)    &   {𝑦 ∣ πœ‘} ∈ V    β‡’   {𝑦 ∣ βˆƒπ‘₯πœ‘} ∈ V
 
Theoremoprabexd 6146* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
(πœ‘ β†’ 𝐴 ∈ V)    &   (πœ‘ β†’ 𝐡 ∈ V)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ βˆƒ*π‘§πœ“)    &   (πœ‘ β†’ 𝐹 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ πœ“)})    β‡’   (πœ‘ β†’ 𝐹 ∈ V)
 
Theoremoprabex 6147* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
𝐴 ∈ V    &   π΅ ∈ V    &   ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) β†’ βˆƒ*π‘§πœ‘)    &   πΉ = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ πœ‘)}    β‡’   πΉ ∈ V
 
Theoremoprabex3 6148* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
𝐻 ∈ V    &   πΉ = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ (𝐻 Γ— 𝐻) ∧ 𝑦 ∈ (𝐻 Γ— 𝐻)) ∧ βˆƒπ‘€βˆƒπ‘£βˆƒπ‘’βˆƒπ‘“((π‘₯ = βŸ¨π‘€, π‘£βŸ© ∧ 𝑦 = βŸ¨π‘’, π‘“βŸ©) ∧ 𝑧 = 𝑅))}    β‡’   πΉ ∈ V
 
Theoremoprabrexex2 6149* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
𝐴 ∈ V    &   {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘} ∈ V    β‡’   {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βˆƒπ‘€ ∈ 𝐴 πœ‘} ∈ V
 
Theoremab2rexex 6150* Existence of a class abstraction of existentially restricted sets. Variables π‘₯ and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐢, which can be thought of as 𝐢(π‘₯, 𝑦). See comments for abrexex 6136. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 𝑧 = 𝐢} ∈ V
 
Theoremab2rexex2 6151* Existence of an existentially restricted class abstraction. πœ‘ normally has free-variable parameters π‘₯, 𝑦, and 𝑧. Compare abrexex2 6143. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   π΅ ∈ V    &   {𝑧 ∣ πœ‘} ∈ V    β‡’   {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 πœ‘} ∈ V
 
TheoremxpexgALT 6152 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4755 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 Γ— 𝐡) ∈ V)
 
Theoremoffval3 6153* General value of (𝐹 βˆ˜π‘“ 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) β†’ (𝐹 βˆ˜π‘“ 𝑅𝐺) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘₯)𝑅(πΊβ€˜π‘₯))))
 
Theoremoffres 6154 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ π‘Š) β†’ ((𝐹 βˆ˜π‘“ 𝑅𝐺) β†Ύ 𝐷) = ((𝐹 β†Ύ 𝐷) βˆ˜π‘“ 𝑅(𝐺 β†Ύ 𝐷)))
 
Theoremofmres 6155* Equivalent expressions for a restriction of the function operation map. Unlike βˆ˜π‘“ 𝑅 which is a proper class, ( βˆ˜π‘“ 𝑅 β†Ύ (𝐴 Γ— 𝐡)) can be a set by ofmresex 6156, allowing it to be used as a function or structure argument. By ofmresval 6112, the restricted operation map values are the same as the original values, allowing theorems for βˆ˜π‘“ 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
( βˆ˜π‘“ 𝑅 β†Ύ (𝐴 Γ— 𝐡)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐡 ↦ (𝑓 βˆ˜π‘“ 𝑅𝑔))
 
Theoremofmresex 6156 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    β‡’   (πœ‘ β†’ ( βˆ˜π‘“ 𝑅 β†Ύ (𝐴 Γ— 𝐡)) ∈ V)
 
2.6.15  First and second members of an ordered pair
 
Syntaxc1st 6157 Extend the definition of a class to include the first member an ordered pair function.
class 1st
 
Syntaxc2nd 6158 Extend the definition of a class to include the second member an ordered pair function.
class 2nd
 
Definitiondf-1st 6159 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6165 proves that it does this. For example, (1st β€˜βŸ¨ 3 , 4 ⟩) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5125 and op1stb 4493). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
1st = (π‘₯ ∈ V ↦ βˆͺ dom {π‘₯})
 
Definitiondf-2nd 6160 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6166 proves that it does this. For example, (2nd β€˜βŸ¨ 3 , 4 ⟩) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5128 and op2ndb 5127). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
2nd = (π‘₯ ∈ V ↦ βˆͺ ran {π‘₯})
 
Theorem1stvalg 6161 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ V β†’ (1st β€˜π΄) = βˆͺ dom {𝐴})
 
Theorem2ndvalg 6162 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ V β†’ (2nd β€˜π΄) = βˆͺ ran {𝐴})
 
Theorem1st0 6163 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
(1st β€˜βˆ…) = βˆ…
 
Theorem2nd0 6164 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
(2nd β€˜βˆ…) = βˆ…
 
Theoremop1st 6165 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴
 
Theoremop2nd 6166 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡
 
Theoremop1std 6167 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   (𝐢 = ⟨𝐴, 𝐡⟩ β†’ (1st β€˜πΆ) = 𝐴)
 
Theoremop2ndd 6168 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   (𝐢 = ⟨𝐴, 𝐡⟩ β†’ (2nd β€˜πΆ) = 𝐡)
 
Theoremop1stg 6169 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (1st β€˜βŸ¨π΄, 𝐡⟩) = 𝐴)
 
Theoremop2ndg 6170 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (2nd β€˜βŸ¨π΄, 𝐡⟩) = 𝐡)
 
Theoremot1stg 6171 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6171, ot2ndg 6172, ot3rdgg 6173.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 ∈ 𝑋) β†’ (1st β€˜(1st β€˜βŸ¨π΄, 𝐡, 𝐢⟩)) = 𝐴)
 
Theoremot2ndg 6172 Extract the second member of an ordered triple. (See ot1stg 6171 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 ∈ 𝑋) β†’ (2nd β€˜(1st β€˜βŸ¨π΄, 𝐡, 𝐢⟩)) = 𝐡)
 
Theoremot3rdgg 6173 Extract the third member of an ordered triple. (See ot1stg 6171 comment.) (Contributed by NM, 3-Apr-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 ∈ 𝑋) β†’ (2nd β€˜βŸ¨π΄, 𝐡, 𝐢⟩) = 𝐢)
 
Theorem1stval2 6174 Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
(𝐴 ∈ (V Γ— V) β†’ (1st β€˜π΄) = ∩ ∩ 𝐴)
 
Theorem2ndval2 6175 Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
(𝐴 ∈ (V Γ— V) β†’ (2nd β€˜π΄) = ∩ ∩ ∩ β—‘{𝐴})
 
Theoremfo1st 6176 The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
1st :V–ontoβ†’V
 
Theoremfo2nd 6177 The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
2nd :V–ontoβ†’V
 
Theoremf1stres 6178 Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(1st β†Ύ (𝐴 Γ— 𝐡)):(𝐴 Γ— 𝐡)⟢𝐴
 
Theoremf2ndres 6179 Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
(2nd β†Ύ (𝐴 Γ— 𝐡)):(𝐴 Γ— 𝐡)⟢𝐡
 
Theoremfo1stresm 6180* Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
(βˆƒπ‘¦ 𝑦 ∈ 𝐡 β†’ (1st β†Ύ (𝐴 Γ— 𝐡)):(𝐴 Γ— 𝐡)–onto→𝐴)
 
Theoremfo2ndresm 6181* Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
(βˆƒπ‘₯ π‘₯ ∈ 𝐴 β†’ (2nd β†Ύ (𝐴 Γ— 𝐡)):(𝐴 Γ— 𝐡)–onto→𝐡)
 
Theorem1stcof 6182 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
(𝐹:𝐴⟢(𝐡 Γ— 𝐢) β†’ (1st ∘ 𝐹):𝐴⟢𝐡)
 
Theorem2ndcof 6183 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
(𝐹:𝐴⟢(𝐡 Γ— 𝐢) β†’ (2nd ∘ 𝐹):𝐴⟢𝐢)
 
Theoremxp1st 6184 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 ∈ (𝐡 Γ— 𝐢) β†’ (1st β€˜π΄) ∈ 𝐡)
 
Theoremxp2nd 6185 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 ∈ (𝐡 Γ— 𝐢) β†’ (2nd β€˜π΄) ∈ 𝐢)
 
Theorem1stexg 6186 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
(𝐴 ∈ 𝑉 β†’ (1st β€˜π΄) ∈ V)
 
Theorem2ndexg 6187 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
(𝐴 ∈ 𝑉 β†’ (2nd β€˜π΄) ∈ V)
 
Theoremelxp6 6188 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5131. (Contributed by NM, 9-Oct-2004.)
(𝐴 ∈ (𝐡 Γ— 𝐢) ↔ (𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ ∧ ((1st β€˜π΄) ∈ 𝐡 ∧ (2nd β€˜π΄) ∈ 𝐢)))
 
Theoremelxp7 6189 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5131. (Contributed by NM, 19-Aug-2006.)
(𝐴 ∈ (𝐡 Γ— 𝐢) ↔ (𝐴 ∈ (V Γ— V) ∧ ((1st β€˜π΄) ∈ 𝐡 ∧ (2nd β€˜π΄) ∈ 𝐢)))
 
Theoremoprssdmm 6190* Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
((πœ‘ ∧ 𝑒 ∈ 𝑆) β†’ βˆƒπ‘£ 𝑣 ∈ 𝑒)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯𝐹𝑦) ∈ 𝑆)    &   (πœ‘ β†’ Rel 𝐹)    β‡’   (πœ‘ β†’ (𝑆 Γ— 𝑆) βŠ† dom 𝐹)
 
Theoremeqopi 6191 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
((𝐴 ∈ (𝑉 Γ— π‘Š) ∧ ((1st β€˜π΄) = 𝐡 ∧ (2nd β€˜π΄) = 𝐢)) β†’ 𝐴 = ⟨𝐡, 𝐢⟩)
 
Theoremxp2 6192* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
(𝐴 Γ— 𝐡) = {π‘₯ ∈ (V Γ— V) ∣ ((1st β€˜π‘₯) ∈ 𝐴 ∧ (2nd β€˜π‘₯) ∈ 𝐡)}
 
Theoremunielxp 6193 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (𝐡 Γ— 𝐢) β†’ βˆͺ 𝐴 ∈ βˆͺ (𝐡 Γ— 𝐢))
 
Theorem1st2nd2 6194 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
(𝐴 ∈ (𝐡 Γ— 𝐢) β†’ 𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩)
 
Theoremxpopth 6195 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
((𝐴 ∈ (𝐢 Γ— 𝐷) ∧ 𝐡 ∈ (𝑅 Γ— 𝑆)) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ 𝐴 = 𝐡))
 
Theoremeqop 6196 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
(𝐴 ∈ (𝑉 Γ— π‘Š) β†’ (𝐴 = ⟨𝐡, 𝐢⟩ ↔ ((1st β€˜π΄) = 𝐡 ∧ (2nd β€˜π΄) = 𝐢)))
 
Theoremeqop2 6197 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
𝐡 ∈ V    &   πΆ ∈ V    β‡’   (𝐴 = ⟨𝐡, 𝐢⟩ ↔ (𝐴 ∈ (V Γ— V) ∧ ((1st β€˜π΄) = 𝐡 ∧ (2nd β€˜π΄) = 𝐢)))
 
Theoremop1steq 6198* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
(𝐴 ∈ (𝑉 Γ— π‘Š) β†’ ((1st β€˜π΄) = 𝐡 ↔ βˆƒπ‘₯ 𝐴 = ⟨𝐡, π‘₯⟩))
 
Theorem2nd1st 6199 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
(𝐴 ∈ (𝐡 Γ— 𝐢) β†’ βˆͺ β—‘{𝐴} = ⟨(2nd β€˜π΄), (1st β€˜π΄)⟩)
 
Theorem1st2nd 6200 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
((Rel 𝐡 ∧ 𝐴 ∈ 𝐡) β†’ 𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15230
  Copyright terms: Public domain < Previous  Next >