Theorem List for Intuitionistic Logic Explorer - 6101-6200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | caovdirg 6101* |
Convert an operation reverse distributive law to class notation.
(Contributed by Mario Carneiro, 19-Oct-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdird 6102* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdi 6103* |
Convert an operation distributive law to class notation. (Contributed
by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) ⇒ ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| |
| Theorem | caov32d 6104* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
| |
| Theorem | caov12d 6105* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| |
| Theorem | caov31d 6106* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
| |
| Theorem | caov13d 6107* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴))) |
| |
| Theorem | caov4d 6108* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| |
| Theorem | caov411d 6109* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
| |
| Theorem | caov42d 6110* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))) |
| |
| Theorem | caov32 6111* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
| |
| Theorem | caov12 6112* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
| |
| Theorem | caov31 6113* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
| |
| Theorem | caov13 6114* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
| |
| Theorem | caovdilemd 6115* |
Lemma used by real number construction. (Contributed by Jim Kingdon,
16-Sep-2019.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆) ⇒ ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| |
| Theorem | caovlem2d 6116* |
Rearrangement of expression involving multiplication (𝐺) and
addition (𝐹). (Contributed by Jim Kingdon,
3-Jan-2020.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆)
& ⊢ (𝜑 → 𝑅 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |
| |
| Theorem | caovimo 6117* |
Uniqueness of inverse element in commutative, associative operation with
identity. The identity element is 𝐵. (Contributed by Jim Kingdon,
18-Sep-2019.)
|
| ⊢ 𝐵 ∈ 𝑆
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) ⇒ ⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) |
| |
| 2.6.12 Maps-to notation
|
| |
| Theorem | elmpocl 6118* |
If a two-parameter class is inhabited, constrain the implicit pair.
(Contributed by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| |
| Theorem | elmpocl1 6119* |
If a two-parameter class is inhabited, the first argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
| |
| Theorem | elmpocl2 6120* |
If a two-parameter class is inhabited, the second argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
| |
| Theorem | elovmpod 6121* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.) Variant of elovmpo 6122 in deduction form. (Revised by AV,
20-Apr-2025.)
|
| ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| |
| Theorem | elovmpo 6122* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.)
|
| ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ 𝐶 ∈ V & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) ⇒ ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| |
| Theorem | elovmporab 6123* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element.
(Contributed by Alexander van der Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ 𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀)) |
| |
| Theorem | elovmporab1w 6124* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element. Here,
the base set of the class abstraction depends on the first operand.
(Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG,
26-Jan-2024.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| |
| Theorem | f1ocnvd 6125* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1od 6126* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1ocnv2d 6127* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1o2d 6128* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1opw2 6129* |
A one-to-one mapping induces a one-to-one mapping on power sets. This
version of f1opw 6130 avoids the Axiom of Replacement.
(Contributed by
Mario Carneiro, 26-Jun-2015.)
|
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵)
& ⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) & ⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) ⇒ ⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | f1opw 6130* |
A one-to-one mapping induces a one-to-one mapping on power sets.
(Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario
Carneiro, 26-Jun-2015.)
|
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | suppssfv 6131* |
Formula building theorem for support restriction, on a function which
preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | suppssov1 6132* |
Formula building theorem for support restrictions: operator with left
annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| 2.6.13 Function operation
|
| |
| Syntax | cof 6133 |
Extend class notation to include mapping of an operation to a function
operation.
|
| class ∘𝑓 𝑅 |
| |
| Syntax | cofr 6134 |
Extend class notation to include mapping of a binary relation to a
function relation.
|
| class ∘𝑟 𝑅 |
| |
| Definition | df-of 6135* |
Define the function operation map. The definition is designed so that
if 𝑅 is a binary operation, then ∘𝑓 𝑅 is the analogous operation
on functions which corresponds to applying 𝑅 pointwise to the values
of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
|
| ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| |
| Definition | df-ofr 6136* |
Define the function relation map. The definition is designed so that if
𝑅 is a binary relation, then ∘𝑓 𝑅 is the analogous relation on
functions which is true when each element of the left function relates
to the corresponding element of the right function. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| |
| Theorem | ofeqd 6137 |
Equality theorem for function operation, deduction form. (Contributed
by SN, 11-Nov-2024.)
|
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofeq 6138 |
Equality theorem for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofreq 6139 |
Equality theorem for function relation. (Contributed by Mario Carneiro,
28-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟
𝑆) |
| |
| Theorem | ofexg 6140 |
A function operation restricted to a set is a set. (Contributed by NM,
28-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
| |
| Theorem | nfof 6141 |
Hypothesis builder for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑓
𝑅 |
| |
| Theorem | nfofr 6142 |
Hypothesis builder for function relation. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑟
𝑅 |
| |
| Theorem | offval 6143* |
Value of an operation applied to two functions. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| |
| Theorem | ofrfval 6144* |
Value of a relation applied to two functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| |
| Theorem | ofvalg 6145 |
Evaluate a function operation at a point. (Contributed by Mario
Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| |
| Theorem | ofrval 6146 |
Exhibit a function relation at a point. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| |
| Theorem | ofmresval 6147 |
Value of a restriction of the function operation map. (Contributed by
NM, 20-Oct-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
| |
| Theorem | off 6148* |
The function operation produces a function. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
| |
| Theorem | offeq 6149* |
Convert an identity of the operation to the analogous identity on
the function operation. (Contributed by Jim Kingdon,
26-Nov-2023.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶
& ⊢ (𝜑 → 𝐻:𝐶⟶𝑈)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| |
| Theorem | ofres 6150 |
Restrict the operands of a function operation to the same domain as that
of the operation itself. (Contributed by Mario Carneiro,
15-Sep-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| |
| Theorem | offval2 6151* |
The function operation expressed as a mapping. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| |
| Theorem | ofrfval2 6152* |
The function relation acting on maps. (Contributed by Mario Carneiro,
20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) |
| |
| Theorem | suppssof1 6153* |
Formula building theorem for support restrictions: vector operation with
left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ (𝜑 → 𝐴:𝐷⟶𝑉)
& ⊢ (𝜑 → 𝐵:𝐷⟶𝑅)
& ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | ofco 6154 |
The composition of a function operation with another function.
(Contributed by Mario Carneiro, 19-Dec-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐻:𝐷⟶𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) |
| |
| Theorem | offveqb 6155* |
Equivalent expressions for equality with a function operation.
(Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro,
5-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) ⇒ ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| |
| Theorem | ofc1g 6156 |
Left operation by a constant. (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| |
| Theorem | ofc2g 6157 |
Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
| |
| Theorem | ofc12 6158 |
Function operation on two constant functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
| |
| Theorem | caofref 6159* |
Transfer a reflexive law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
| |
| Theorem | caofinvl 6160* |
Transfer a left inverse law to the function operation. (Contributed
by NM, 22-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝑁:𝑆⟶𝑆)
& ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |
| |
| Theorem | caofcom 6161* |
Transfer a commutative law to the function operation. (Contributed by
Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
| |
| Theorem | caofrss 6162* |
Transfer a relation subset law to the function relation. (Contributed
by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
| |
| Theorem | caoftrn 6163* |
Transfer a transitivity law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) → 𝐹 ∘𝑟 𝑈𝐻)) |
| |
| Theorem | caofdig 6164* |
Transfer a distributive law to the function operation. (Contributed
by Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝐾)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
| |
| 2.6.14 Functions (continued)
|
| |
| Theorem | resfunexgALT 6165 |
The restriction of a function to a set exists. Compare Proposition 6.17
of [TakeutiZaring] p. 28. This
version has a shorter proof than
resfunexg 5783 but requires ax-pow 4207 and ax-un 4468. (Contributed by NM,
7-Apr-1995.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
| |
| Theorem | cofunexg 6166 |
Existence of a composition when the first member is a function.
(Contributed by NM, 8-Oct-2007.)
|
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) |
| |
| Theorem | cofunex2g 6167 |
Existence of a composition when the second member is one-to-one.
(Contributed by NM, 8-Oct-2007.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
| |
| Theorem | fnexALT 6168 |
If the domain of a function is a set, the function is a set. Theorem
6.16(1) of [TakeutiZaring] p. 28.
This theorem is derived using the Axiom
of Replacement in the form of funimaexg 5342. This version of fnex 5784
uses
ax-pow 4207 and ax-un 4468, whereas fnex 5784
does not. (Contributed by NM,
14-Aug-1994.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) |
| |
| Theorem | funexw 6169 |
Weak version of funex 5785 that holds without ax-coll 4148. If the domain and
codomain of a function exist, so does the function. (Contributed by Rohan
Ridenour, 13-Aug-2023.)
|
| ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) |
| |
| Theorem | mptexw 6170* |
Weak version of mptex 5788 that holds without ax-coll 4148. If the domain
and codomain of a function given by maps-to notation are sets, the
function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| |
| Theorem | funrnex 6171 |
If the domain of a function exists, so does its range. Part of Theorem
4.15(v) of [Monk1] p. 46. This theorem is
derived using the Axiom of
Replacement in the form of funex 5785. (Contributed by NM, 11-Nov-1995.)
|
| ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) |
| |
| Theorem | focdmex 6172 |
If the domain of an onto function exists, so does its codomain.
(Contributed by NM, 23-Jul-2004.)
|
| ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| |
| Theorem | f1dmex 6173 |
If the codomain of a one-to-one function exists, so does its domain. This
can be thought of as a form of the Axiom of Replacement. (Contributed by
NM, 4-Sep-2004.)
|
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| |
| Theorem | abrexex 6174* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in the class expression
substituted for 𝐵, which can be thought of as 𝐵(𝑥). This
simple-looking theorem is actually quite powerful and appears to involve
the Axiom of Replacement in an intrinsic way, as can be seen by tracing
back through the path mptexg 5787, funex 5785, fnex 5784, resfunexg 5783, and
funimaexg 5342. See also abrexex2 6181. (Contributed by NM, 16-Oct-2003.)
(Proof shortened by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V |
| |
| Theorem | abrexexg 6175* |
Existence of a class abstraction of existentially restricted sets. 𝑥
is normally a free-variable parameter in 𝐵. The antecedent assures
us that 𝐴 is a set. (Contributed by NM,
3-Nov-2003.)
|
| ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
| |
| Theorem | iunexg 6176* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| |
| Theorem | abrexex2g 6177* |
Existence of an existentially restricted class abstraction.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
| |
| Theorem | opabex3d 6178* |
Existence of an ordered pair abstraction, deduction version.
(Contributed by Alexander van der Vekens, 19-Oct-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) |
| |
| Theorem | opabex3 6179* |
Existence of an ordered pair abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| |
| Theorem | iunex 6180* |
The existence of an indexed union. 𝑥 is normally a free-variable
parameter in the class expression substituted for 𝐵, which can be
read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| |
| Theorem | abrexex2 6181* |
Existence of an existentially restricted class abstraction. 𝜑 is
normally has free-variable parameters 𝑥 and 𝑦. See
also
abrexex 6174. (Contributed by NM, 12-Sep-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| |
| Theorem | abexssex 6182* |
Existence of a class abstraction with an existentially quantified
expression. Both 𝑥 and 𝑦 can be free in 𝜑.
(Contributed
by NM, 29-Jul-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
| |
| Theorem | abexex 6183* |
A condition where a class builder continues to exist after its wff is
existentially quantified. (Contributed by NM, 4-Mar-2007.)
|
| ⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴)
& ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| |
| Theorem | oprabexd 6184* |
Existence of an operator abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓)
& ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) |
| |
| Theorem | oprabex 6185* |
Existence of an operation class abstraction. (Contributed by NM,
19-Oct-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑)
& ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V |
| |
| Theorem | oprabex3 6186* |
Existence of an operation class abstraction (special case).
(Contributed by NM, 19-Oct-2004.)
|
| ⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V |
| |
| Theorem | oprabrexex2 6187* |
Existence of an existentially restricted operation abstraction.
(Contributed by Jeff Madsen, 11-Jun-2010.)
|
| ⊢ 𝐴 ∈ V & ⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V |
| |
| Theorem | ab2rexex 6188* |
Existence of a class abstraction of existentially restricted sets.
Variables 𝑥 and 𝑦 are normally
free-variable parameters in the
class expression substituted for 𝐶, which can be thought of as
𝐶(𝑥, 𝑦). See comments for abrexex 6174. (Contributed by NM,
20-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V |
| |
| Theorem | ab2rexex2 6189* |
Existence of an existentially restricted class abstraction. 𝜑
normally has free-variable parameters 𝑥, 𝑦, and 𝑧.
Compare abrexex2 6181. (Contributed by NM, 20-Sep-2011.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V |
| |
| Theorem | xpexgALT 6190 |
The cross product of two sets is a set. Proposition 6.2 of
[TakeutiZaring] p. 23. This
version is proven using Replacement; see
xpexg 4777 for a version that uses the Power Set axiom
instead.
(Contributed by Mario Carneiro, 20-May-2013.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| |
| Theorem | offval3 6191* |
General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on
functionality
of 𝐹 and 𝐺. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| |
| Theorem | offres 6192 |
Pointwise combination commutes with restriction. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘𝑓 𝑅(𝐺 ↾ 𝐷))) |
| |
| Theorem | ofmres 6193* |
Equivalent expressions for a restriction of the function operation map.
Unlike ∘𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can
be a set by ofmresex 6194, allowing it to be used as a function or
structure argument. By ofmresval 6147, the restricted operation map
values are the same as the original values, allowing theorems for
∘𝑓 𝑅 to be reused. (Contributed by NM,
20-Oct-2014.)
|
| ⊢ ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘𝑓 𝑅𝑔)) |
| |
| Theorem | ofmresex 6194 |
Existence of a restriction of the function operation map. (Contributed
by NM, 20-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) |
| |
| Theorem | uchoice 6195* |
Principle of unique choice. This is also called non-choice. The name
choice results in its similarity to something like acfun 7274 (with the key
difference being the change of ∃ to ∃!) but unique choice in
fact follows from the axiom of collection and our other axioms. This is
somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is
better described by the paragraph at the end of Section 3.9 which starts
"A similar issue arises in set-theoretic mathematics".
(Contributed by
Jim Kingdon, 13-Sep-2025.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |
| |
| 2.6.15 First and second members of an ordered
pair
|
| |
| Syntax | c1st 6196 |
Extend the definition of a class to include the first member an ordered
pair function.
|
| class 1st |
| |
| Syntax | c2nd 6197 |
Extend the definition of a class to include the second member an ordered
pair function.
|
| class 2nd |
| |
| Definition | df-1st 6198 |
Define a function that extracts the first member, or abscissa, of an
ordered pair. Theorem op1st 6204 proves that it does this. For example,
(1st ‘〈 3 , 4 〉) = 3 . Equivalent to Definition 5.13 (i) of
[Monk1] p. 52 (compare op1sta 5151 and op1stb 4513). The notation is the same
as Monk's. (Contributed by NM, 9-Oct-2004.)
|
| ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
| |
| Definition | df-2nd 6199 |
Define a function that extracts the second member, or ordinate, of an
ordered pair. Theorem op2nd 6205 proves that it does this. For example,
(2nd ‘〈 3 , 4 〉) = 4 . Equivalent to Definition 5.13 (ii)
of [Monk1] p. 52 (compare op2nda 5154 and op2ndb 5153). The notation is the
same as Monk's. (Contributed by NM, 9-Oct-2004.)
|
| ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
| |
| Theorem | 1stvalg 6200 |
The value of the function that extracts the first member of an ordered
pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ (𝐴 ∈ V → (1st
‘𝐴) = ∪ dom {𝐴}) |