Home Intuitionistic Logic ExplorerTheorem List (p. 62 of 134) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremmpofvex 6101* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)

Theoremfnmpoi 6102* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       𝐹 Fn (𝐴 × 𝐵)

Theoremdmmpo 6103* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       dom 𝐹 = (𝐴 × 𝐵)

Theoremmpofvexi 6104* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V    &   𝑅 ∈ V    &   𝑆 ∈ V       (𝑅𝐹𝑆) ∈ V

Theoremovmpoelrn 6105* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)

Theoremdmmpoga 6106* Domain of an operation given by the maps-to notation, closed form of dmmpo 6103. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))

Theoremdmmpog 6107* Domain of an operation given by the maps-to notation, closed form of dmmpo 6103. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))

Theoremmpoexxg 6108* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵𝑆) → 𝐹 ∈ V)

Theoremmpoexg 6109* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)

Theoremmpoexga 6110* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)

Theoremmpoex 6111* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) ∈ V

Theoremfnmpoovd 6112* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
(𝜑𝑀 Fn (𝐴 × 𝐵))    &   ((𝑖 = 𝑎𝑗 = 𝑏) → 𝐷 = 𝐶)    &   ((𝜑𝑖𝐴𝑗𝐵) → 𝐷𝑈)    &   ((𝜑𝑎𝐴𝑏𝐵) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴, 𝑏𝐵𝐶) ↔ ∀𝑖𝐴𝑗𝐵 (𝑖𝑀𝑗) = 𝐷))

Theoremfmpoco 6113* Composition of two functions. Variation of fmptco 5586 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)    &   (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))    &   (𝜑𝐺 = (𝑧𝐶𝑆))    &   (𝑧 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))

Theoremoprabco 6114* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
((𝑥𝐴𝑦𝐵) → 𝐶𝐷)    &   𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))       (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))

Theoremoprab2co 6115* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶𝑅)    &   ((𝑥𝐴𝑦𝐵) → 𝐷𝑆)    &   𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨𝐶, 𝐷⟩)    &   𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑀𝐷))       (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))

Theoremdf1st2 6116* An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))

Theoremdf2nd2 6117* An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))

Theorem1stconst 6118 The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
(𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Theorem2ndconst 6119 The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
(𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Theoremdfmpo 6120* Alternate definition for the maps-to notation df-mpo 5779 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐶 ∈ V       (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}

Theoremcnvf1olem 6121 Lemma for cnvf1o 6122. (Contributed by Mario Carneiro, 27-Apr-2014.)
((Rel 𝐴 ∧ (𝐵𝐴𝐶 = {𝐵})) → (𝐶𝐴𝐵 = {𝐶}))

Theoremcnvf1o 6122* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
(Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)

Theoremf2ndf 6123 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)

Theoremfo2ndf 6124 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Theoremf1o2ndf1 6125 The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)

Theoremalgrflem 6126 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Theoremalgrflemg 6127 Lemma for algrf 11737 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))

Theoremxporderlem 6128* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))

Theorempoxp 6129* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}       ((𝑅 Po 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵))

Theoremspc2ed 6130* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.)
𝑥𝜒    &   𝑦𝜒    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))       ((𝜑 ∧ (𝐴𝑉𝐵𝑊)) → (𝜒 → ∃𝑥𝑦𝜓))

Theoremcnvoprab 6131* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝑥𝜓    &   𝑦𝜓    &   (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))    &   (𝜓𝑎 ∈ (V × V))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}

Theoremf1od2 6132* Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑊)    &   ((𝜑𝑧𝐷) → (𝐼𝑋𝐽𝑌))    &   (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧𝐷 ∧ (𝑥 = 𝐼𝑦 = 𝐽))))       (𝜑𝐹:(𝐴 × 𝐵)–1-1-onto𝐷)

Theoremdisjxp1 6133* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑Disj 𝑥𝐴 𝐵)       (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))

Theoremdisjsnxp 6134* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Disj 𝑗𝐴 ({𝑗} × 𝐵)

2.6.15  Special maps-to operations

The following theorems are about maps-to operations (see df-mpo 5779) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 5849, ovmpox 5899 and fmpox 6098). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.

Theoremopeliunxp2f 6135* Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4679. (Contributed by AV, 25-Oct-2020.)
𝑥𝐸    &   (𝑥 = 𝐶𝐵 = 𝐸)       (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))

Theoremmpoxopn0yelv 6136* If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)       ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))

Theoremmpoxopoveq 6137* Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})       (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})

Theoremmpoxopovel 6138* Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})       ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) ↔ (𝐾𝑉𝑁𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))

Theoremrbropapd 6139* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})    &   ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))       (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))

Theoremrbropap 6140* Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.)
(𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})    &   ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))       ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))

2.6.16  Function transposition

Syntaxctpos 6141 The transposition of a function.
class tpos 𝐹

Definitiondf-tpos 6142* Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.)
tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))

Theoremtposss 6143 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)

Theoremtposeq 6144 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Theoremtposeqd 6145 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐹 = 𝐺)       (𝜑 → tpos 𝐹 = tpos 𝐺)

Theoremtposssxp 6146 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)

Theoremreltpos 6147 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Rel tpos 𝐹

Theorembrtpos2 6148 Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Theorembrtpos0 6149 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))

Theoremreldmtpos 6150 Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Theorembrtposg 6151 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Theoremottposg 6152 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))

Theoremdmtpos 6153 The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Theoremrntpos 6154 The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Theoremtposexg 6155 The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹𝑉 → tpos 𝐹 ∈ V)

Theoremovtposg 6156 The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))

Theoremtposfun 6157 The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Fun 𝐹 → Fun tpos 𝐹)

Theoremdftpos2 6158* Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))

Theoremdftpos3 6159* Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4547. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})

Theoremdftpos4 6160* Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))

Theoremtpostpos 6161 Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.)
tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))

Theoremtpostpos2 6162 Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹)

Theoremtposfn2 6163 The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))

Theoremtposfo2 6164 Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))

Theoremtposf2 6165 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Theoremtposf12 6166 Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Theoremtposf1o2 6167 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))

Theoremtposfo 6168 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)–onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto𝐶)

Theoremtposf 6169 The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶)

Theoremtposfn 6170 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴))

Theoremtpos0 6171 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
tpos ∅ = ∅

Theoremtposco 6172 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos (𝐹𝐺) = (𝐹 ∘ tpos 𝐺)

Theoremtpossym 6173* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)))

Theoremtposeqi 6174 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = 𝐺       tpos 𝐹 = tpos 𝐺

Theoremtposex 6175 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 ∈ V       tpos 𝐹 ∈ V

Theoremnftpos 6176 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝑥𝐹       𝑥tpos 𝐹

Theoremtposoprab 6177* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}

Theoremtposmpo 6178* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)

2.6.17  Undefined values

Theorempwuninel2 6179 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Theorem2pwuninelg 6180 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
(𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)

2.6.18  Functions on ordinals; strictly monotone ordinal functions

Theoremiunon 6181* The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ On) → 𝑥𝐴 𝐵 ∈ On)

Syntaxwsmo 6182 Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals.
wff Smo 𝐴

Definitiondf-smo 6183* Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))

Theoremdfsmo2 6184* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
(Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))

Theoremissmo 6185* Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
𝐴:𝐵⟶On    &   Ord 𝐵    &   ((𝑥𝐵𝑦𝐵) → (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))    &   dom 𝐴 = 𝐵       Smo 𝐴

Theoremissmo2 6186* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
(𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))

Theoremsmoeq 6187 Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
(𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Theoremsmodm 6188 The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
(Smo 𝐴 → Ord dom 𝐴)

Theoremsmores 6189 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))

Theoremsmores3 6190 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Theoremsmores2 6191 A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Theoremsmodm2 6192 The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)

Theoremsmofvon2dm 6193 The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
((Smo 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)

Theoremiordsmo 6194 The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Ord 𝐴       Smo ( I ↾ 𝐴)

Theoremsmo0 6195 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Smo ∅

Theoremsmofvon 6196 If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵) → (𝐵𝐴) ∈ On)

Theoremsmoel 6197 If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵𝐶𝐴) → (𝐵𝐶) ∈ (𝐵𝐴))

Theoremsmoiun 6198* The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
((Smo 𝐵𝐴 ∈ dom 𝐵) → 𝑥𝐴 (𝐵𝑥) ⊆ (𝐵𝐴))

Theoremsmoiso 6199 If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴𝐵 ⊆ On) → Smo 𝐹)

Theoremsmoel2 6200 A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
(((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13316
 Copyright terms: Public domain < Previous  Next >