![]() |
Intuitionistic Logic Explorer Theorem List (p. 62 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tpos0 6101 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
⊢ tpos ∅ = ∅ | ||
Theorem | tposco 6102 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
Theorem | tpossym 6103* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
Theorem | tposeqi 6104 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
Theorem | tposex 6105 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
Theorem | nftpos 6106 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
Theorem | tposoprab 6107* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
Theorem | tposmpo 6108* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | pwuninel2 6109 | The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
Theorem | 2pwuninelg 6110 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
Theorem | iunon 6111* | The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
Syntax | wsmo 6112 | Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals. |
wff Smo 𝐴 | ||
Definition | df-smo 6113* | Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.) |
⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | ||
Theorem | dfsmo2 6114* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | ||
Theorem | issmo 6115* | Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) |
⊢ 𝐴:𝐵⟶On & ⊢ Ord 𝐵 & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) & ⊢ dom 𝐴 = 𝐵 ⇒ ⊢ Smo 𝐴 | ||
Theorem | issmo2 6116* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) | ||
Theorem | smoeq 6117 | Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵)) | ||
Theorem | smodm 6118 | The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ (Smo 𝐴 → Ord dom 𝐴) | ||
Theorem | smores 6119 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
⊢ ((Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) | ||
Theorem | smores3 6120 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) | ||
Theorem | smores2 6121 | A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
⊢ ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹 ↾ 𝐴)) | ||
Theorem | smodm2 6122 | The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | ||
Theorem | smofvon2dm 6123 | The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | ||
Theorem | iordsmo 6124 | The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
⊢ Ord 𝐴 ⇒ ⊢ Smo ( I ↾ 𝐴) | ||
Theorem | smo0 6125 | The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ Smo ∅ | ||
Theorem | smofvon 6126 | If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | ||
Theorem | smoel 6127 | If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) | ||
Theorem | smoiun 6128* | The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) | ||
Theorem | smoiso 6129 | If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) | ||
Theorem | smoel2 6130 | A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | ||
Syntax | crecs 6131 | Notation for a function defined by strong transfinite recursion. |
class recs(𝐹) | ||
Definition | df-recs 6132* |
Define a function recs(𝐹) on On, the
class of ordinal
numbers, by transfinite recursion given a rule 𝐹 which sets the next
value given all values so far. See df-irdg 6197 for more details on why
this definition is desirable. Unlike df-irdg 6197 which restricts the
update rule to use only the previous value, this version allows the
update rule to use all previous values, which is why it is
described
as "strong", although it is actually more primitive. See tfri1d 6162 and
tfri2d 6163 for the primary contract of this definition.
(Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
Theorem | recseq 6133 | Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) | ||
Theorem | nfrecs 6134 | Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥recs(𝐹) | ||
Theorem | tfrlem1 6135* | A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) & ⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) | ||
Theorem | tfrlem3ag 6136* | Lemma for transfinite recursion. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by Jim Kingdon, 5-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐺 ∈ V → (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤))))) | ||
Theorem | tfrlem3a 6137* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝐺 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ 𝑤)))) | ||
Theorem | tfrlem3 6138* | Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} | ||
Theorem | tfrlem3-2d 6139* | Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) | ||
Theorem | tfrlem4 6140* | Lemma for transfinite recursion. 𝐴 is the class of all "acceptable" functions, and 𝐹 is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) | ||
Theorem | tfrlem5 6141* | Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
Theorem | recsfval 6142* | Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ recs(𝐹) = ∪ 𝐴 | ||
Theorem | tfrlem6 6143* | Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Rel recs(𝐹) | ||
Theorem | tfrlem7 6144* | Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Fun recs(𝐹) | ||
Theorem | tfrlem8 6145* | Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ Ord dom recs(𝐹) | ||
Theorem | tfrlem9 6146* | Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))) | ||
Theorem | tfrfun 6147 | Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.) |
⊢ Fun recs(𝐹) | ||
Theorem | tfr2a 6148 | A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
Theorem | tfr0dm 6149 | Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → ∅ ∈ dom 𝐹) | ||
Theorem | tfr0 6150 | Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.) |
⊢ 𝐹 = recs(𝐺) ⇒ ⊢ ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅)) | ||
Theorem | tfrlemisucfn 6151* | We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 2-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) Fn suc 𝑧) | ||
Theorem | tfrlemisucaccv 6152* | We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ (𝜑 → 𝑧 ∈ On) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) | ||
Theorem | tfrlemibacc 6153* | Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
Theorem | tfrlemibxssdm 6154* | The union of 𝐵 is defined on all ordinals. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝑥 ⊆ dom ∪ 𝐵) | ||
Theorem | tfrlemibfn 6155* | The union of 𝐵 is a function defined on 𝑥. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝑥) | ||
Theorem | tfrlemibex 6156* | The set 𝐵 exists. Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | tfrlemiubacc 6157* | The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6159). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) | ||
Theorem | tfrlemiex 6158* | Lemma for tfrlemi1 6159. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} & ⊢ (𝜑 → 𝑥 ∈ On) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑢 ∈ 𝑥 (𝑓‘𝑢) = (𝐹‘(𝑓 ↾ 𝑢)))) | ||
Theorem | tfrlemi1 6159* |
We can define an acceptable function on any ordinal.
As with many of the transfinite recursion theorems, we have a hypothesis that states that 𝐹 is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ On) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) | ||
Theorem | tfrlemi14d 6160* | The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → dom recs(𝐹) = On) | ||
Theorem | tfrexlem 6161* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑉) → (recs(𝐹)‘𝐶) ∈ V) | ||
Theorem | tfri1d 6162* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
Theorem | tfri2d 6163* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6192). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ On) → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
Theorem | tfr1onlem3ag 6164* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3ag 6136 but for tfr1on 6177 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ (𝐻 ∈ 𝑉 → (𝐻 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝐻 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝐻‘𝑤) = (𝐺‘(𝐻 ↾ 𝑤))))) | ||
Theorem | tfr1onlem3 6165* | Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6138 but for tfr1on 6177 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} ⇒ ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} | ||
Theorem | tfr1onlemssrecs 6166* | Lemma for tfr1on 6177. The union of functions acceptable for tfr1on 6177 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
Theorem | tfr1onlemsucfn 6167* | We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6177. (Contributed by Jim Kingdon, 12-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) Fn suc 𝑧) | ||
Theorem | tfr1onlemsucaccv 6168* | Lemma for tfr1on 6177. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔 Fn 𝑧) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
Theorem | tfr1onlembacc 6169* | Lemma for tfr1on 6177. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
Theorem | tfr1onlembxssdm 6170* | Lemma for tfr1on 6177. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
Theorem | tfr1onlembfn 6171* | Lemma for tfr1on 6177. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵 Fn 𝐷) | ||
Theorem | tfr1onlembex 6172* | Lemma for tfr1on 6177. The set 𝐵 exists. (Contributed by Jim Kingdon, 14-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | tfr1onlemubacc 6173* | Lemma for tfr1on 6177. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
Theorem | tfr1onlemex 6174* | Lemma for tfr1on 6177. (Contributed by Jim Kingdon, 16-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐷 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) | ||
Theorem | tfr1onlemaccex 6175* |
We can define an acceptable function on any element of 𝑋.
As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 16-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → ∃𝑔(𝑔 Fn 𝐶 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | ||
Theorem | tfr1onlemres 6176* | Lemma for tfr1on 6177. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
Theorem | tfr1on 6177* | Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
Theorem | tfri1dALT 6178* |
Alternate proof of tfri1d 6162 in terms of tfr1on 6177.
Although this does show that the tfr1on 6177 proof is general enough to also prove tfri1d 6162, the tfri1d 6162 proof is simpler in places because it does not need to deal with 𝑋 being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ (𝜑 → 𝐹 Fn On) | ||
Theorem | tfrcllemssrecs 6179* | Lemma for tfrcl 6191. The union of functions acceptable for tfrcl 6191 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → Ord 𝑋) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ recs(𝐺)) | ||
Theorem | tfrcllemsucfn 6180* | We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6191. (Contributed by Jim Kingdon, 24-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑧 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}):suc 𝑧⟶𝑆) | ||
Theorem | tfrcllemsucaccv 6181* | Lemma for tfrcl 6191. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑧 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑔:𝑧⟶𝑆) & ⊢ (𝜑 → 𝑔 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | ||
Theorem | tfrcllembacc 6182* | Lemma for tfrcl 6191. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | ||
Theorem | tfrcllembxssdm 6183* | Lemma for tfrcl 6191. The union of 𝐵 is defined on all elements of 𝑋. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐷 ⊆ dom ∪ 𝐵) | ||
Theorem | tfrcllembfn 6184* | Lemma for tfrcl 6191. The union of 𝐵 is a function defined on 𝑥. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∪ 𝐵:𝐷⟶𝑆) | ||
Theorem | tfrcllembex 6185* | Lemma for tfrcl 6191. The set 𝐵 exists. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | tfrcllemubacc 6186* | Lemma for tfrcl 6191. The union of 𝐵 satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∀𝑢 ∈ 𝐷 (∪ 𝐵‘𝑢) = (𝐺‘(∪ 𝐵 ↾ 𝑢))) | ||
Theorem | tfrcllemex 6187* | Lemma for tfrcl 6191. (Contributed by Jim Kingdon, 26-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐷 ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝐷⟶𝑆 ∧ ∀𝑢 ∈ 𝐷 (𝑓‘𝑢) = (𝐺‘(𝑓 ↾ 𝑢)))) | ||
Theorem | tfrcllemaccex 6188* |
We can define an acceptable function on any element of 𝑋.
As with many of the transfinite recursion theorems, we have hypotheses that state that 𝐹 is a function and that it is defined up to 𝑋. (Contributed by Jim Kingdon, 26-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → ∃𝑔(𝑔:𝐶⟶𝑆 ∧ ∀𝑢 ∈ 𝐶 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | ||
Theorem | tfrcllemres 6189* | Lemma for tfr1on 6177. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) | ||
Theorem | tfrcldm 6190* | Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ dom 𝐹) | ||
Theorem | tfrcl 6191* | Closure for transfinite recursion. As with tfr1on 6177, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → Ord 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝑆) | ||
Theorem | tfri1 6192* |
Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ 𝐹 Fn On | ||
Theorem | tfri2 6193* | Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6192). Here we show that the function 𝐹 has the property that for any function 𝐺 satisfying that condition, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) | ||
Theorem | tfri3 6194* | Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6192). Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by Jim Kingdon, 4-May-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) ⇒ ⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) | ||
Theorem | tfrex 6195* | The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.) |
⊢ 𝐹 = recs(𝐺) & ⊢ (𝜑 → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝐹‘𝐴) ∈ V) | ||
Syntax | crdg 6196 | Extend class notation with the recursive definition generator, with characteristic function 𝐹 and initial value 𝐼. |
class rec(𝐹, 𝐼) | ||
Definition | df-irdg 6197* |
Define a recursive definition generator on On (the
class of ordinal
numbers) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our rec operation
(especially when df-recs 6132
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple. In classical logic it would be easier to divide this definition
into cases based on whether the domain of 𝑔 is zero, a successor, or
a limit ordinal. Cases do not (in general) work that way in
intuitionistic logic, so instead we choose a definition which takes the
union of all the results of the characteristic function for ordinals in
the domain of 𝑔. This means that this definition has
the expected
properties for increasing and continuous ordinal functions, which
include ordinal addition and multiplication.
For finite recursion we also define df-frec 6218 and for suitable characteristic functions df-frec 6218 yields the same result as rec restricted to ω, as seen at frecrdg 6235. Note: We introduce rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Jim Kingdon, 19-May-2019.) |
⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ (𝐼 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | ||
Theorem | rdgeq1 6198 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
⊢ (𝐹 = 𝐺 → rec(𝐹, 𝐴) = rec(𝐺, 𝐴)) | ||
Theorem | rdgeq2 6199 | Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.) |
⊢ (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵)) | ||
Theorem | rdgfun 6200 | The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ Fun rec(𝐹, 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |