Theorem List for Intuitionistic Logic Explorer - 6101-6200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fnovrn 6101 |
An operation's value belongs to its range. (Contributed by NM,
10-Feb-2007.)
|
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| |
| Theorem | ovelrn 6102* |
A member of an operation's range is a value of the operation.
(Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro,
30-Jan-2014.)
|
| ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| |
| Theorem | funimassov 6103* |
Membership relation for the values of a function whose image is a
subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
| |
| Theorem | ovelimab 6104* |
Operation value in an image. (Contributed by Mario Carneiro,
23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
|
| ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐷 = (𝑥𝐹𝑦))) |
| |
| Theorem | ovconst2 6105 |
The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
|
| ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) |
| |
| Theorem | caovclg 6106* |
Convert an operation closure law to class notation. (Contributed by
Mario Carneiro, 26-May-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
| |
| Theorem | caovcld 6107* |
Convert an operation closure law to class notation. (Contributed by
Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
& ⊢ (𝜑 → 𝐴 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
| |
| Theorem | caovcl 6108* |
Convert an operation closure law to class notation. (Contributed by NM,
4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
|
| ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
| |
| Theorem | caovcomg 6109* |
Convert an operation commutative law to class notation. (Contributed
by Mario Carneiro, 1-Jun-2013.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| |
| Theorem | caovcomd 6110* |
Convert an operation commutative law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| |
| Theorem | caovcom 6111* |
Convert an operation commutative law to class notation. (Contributed
by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) ⇒ ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| |
| Theorem | caovassg 6112* |
Convert an operation associative law to class notation. (Contributed
by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro,
26-May-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| |
| Theorem | caovassd 6113* |
Convert an operation associative law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| |
| Theorem | caovass 6114* |
Convert an operation associative law to class notation. (Contributed
by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
| |
| Theorem | caovcang 6115* |
Convert an operation cancellation law to class notation. (Contributed
by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | caovcand 6116* |
Convert an operation cancellation law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
& ⊢ (𝜑 → 𝐴 ∈ 𝑇)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | caovcanrd 6117* |
Commute the arguments of an operation cancellation law. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
& ⊢ (𝜑 → 𝐴 ∈ 𝑇)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) ⇒ ⊢ (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | caovcan 6118* |
Convert an operation cancellation law to class notation. (Contributed
by NM, 20-Aug-1995.)
|
| ⊢ 𝐶 ∈ V & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| |
| Theorem | caovordig 6119* |
Convert an operation ordering law to class notation. (Contributed by
Mario Carneiro, 31-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| |
| Theorem | caovordid 6120* |
Convert an operation ordering law to class notation. (Contributed by
Mario Carneiro, 31-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| |
| Theorem | caovordg 6121* |
Convert an operation ordering law to class notation. (Contributed by
NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| |
| Theorem | caovordd 6122* |
Convert an operation ordering law to class notation. (Contributed by
Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| |
| Theorem | caovord2d 6123* |
Operation ordering law with commuted arguments. (Contributed by Mario
Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| |
| Theorem | caovord3d 6124* |
Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ (𝜑 → 𝐷 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵))) |
| |
| Theorem | caovord 6125* |
Convert an operation ordering law to class notation. (Contributed by
NM, 19-Feb-1996.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ⇒ ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| |
| Theorem | caovord2 6126* |
Operation ordering law with commuted arguments. (Contributed by NM,
27-Feb-1996.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) ⇒ ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| |
| Theorem | caovord3 6127* |
Ordering law. (Contributed by NM, 29-Feb-1996.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ 𝐷 ∈ V ⇒ ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| |
| Theorem | caovdig 6128* |
Convert an operation distributive law to class notation. (Contributed
by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
| |
| Theorem | caovdid 6129* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝐾)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
| |
| Theorem | caovdir2d 6130* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| |
| Theorem | caovdirg 6131* |
Convert an operation reverse distributive law to class notation.
(Contributed by Mario Carneiro, 19-Oct-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdird 6132* |
Convert an operation distributive law to class notation. (Contributed
by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) & ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| |
| Theorem | caovdi 6133* |
Convert an operation distributive law to class notation. (Contributed
by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) ⇒ ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| |
| Theorem | caov32d 6134* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
| |
| Theorem | caov12d 6135* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| |
| Theorem | caov31d 6136* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)) |
| |
| Theorem | caov13d 6137* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) ⇒ ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴))) |
| |
| Theorem | caov4d 6138* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| |
| Theorem | caov411d 6139* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
| |
| Theorem | caov42d 6140* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))) |
| |
| Theorem | caov32 6141* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
| |
| Theorem | caov12 6142* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
| |
| Theorem | caov31 6143* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
| |
| Theorem | caov13 6144* |
Rearrange arguments in a commutative, associative operation.
(Contributed by NM, 26-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
& ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ⇒ ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
| |
| Theorem | caovdilemd 6145* |
Lemma used by real number construction. (Contributed by Jim Kingdon,
16-Sep-2019.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆) ⇒ ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| |
| Theorem | caovlem2d 6146* |
Rearrangement of expression involving multiplication (𝐺) and
addition (𝐹). (Contributed by Jim Kingdon,
3-Jan-2020.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ 𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ 𝑆)
& ⊢ (𝜑 → 𝐷 ∈ 𝑆)
& ⊢ (𝜑 → 𝐻 ∈ 𝑆)
& ⊢ (𝜑 → 𝑅 ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))))) |
| |
| Theorem | caovimo 6147* |
Uniqueness of inverse element in commutative, associative operation with
identity. The identity element is 𝐵. (Contributed by Jim Kingdon,
18-Sep-2019.)
|
| ⊢ 𝐵 ∈ 𝑆
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) & ⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) ⇒ ⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) |
| |
| 2.6.12 Maps-to notation
|
| |
| Theorem | elmpocl 6148* |
If a two-parameter class is inhabited, constrain the implicit pair.
(Contributed by Stefan O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| |
| Theorem | elmpocl1 6149* |
If a two-parameter class is inhabited, the first argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆 ∈ 𝐴) |
| |
| Theorem | elmpocl2 6150* |
If a two-parameter class is inhabited, the second argument is in its
nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan
O'Rear, 7-Mar-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 𝑇 ∈ 𝐵) |
| |
| Theorem | elovmpod 6151* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.) Variant of elovmpo 6152 in deduction form. (Revised by AV,
20-Apr-2025.)
|
| ⊢ 𝑂 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ (𝜑 → 𝑋 ∈ 𝐴)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑋𝑂𝑌) ↔ 𝐸 ∈ 𝐷)) |
| |
| Theorem | elovmpo 6152* |
Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear,
21-Jan-2015.)
|
| ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶)
& ⊢ 𝐶 ∈ V & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) ⇒ ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| |
| Theorem | elovmporab 6153* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element.
(Contributed by Alexander van der Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ 𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ 𝑀)) |
| |
| Theorem | elovmporab1w 6154* |
Implications for the value of an operation, defined by the maps-to
notation with a class abstraction as a result, having an element. Here,
the base set of the class abstraction depends on the first operand.
(Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG,
26-Jan-2024.)
|
| ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) & ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈
V) ⇒ ⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| |
| Theorem | f1ocnvd 6155* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1od 6156* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1ocnv2d 6157* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
| |
| Theorem | f1o2d 6158* |
Describe an implicit one-to-one onto function. (Contributed by Mario
Carneiro, 12-May-2014.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| |
| Theorem | f1opw2 6159* |
A one-to-one mapping induces a one-to-one mapping on power sets. This
version of f1opw 6160 avoids the Axiom of Replacement.
(Contributed by
Mario Carneiro, 26-Jun-2015.)
|
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵)
& ⊢ (𝜑 → (◡𝐹 “ 𝑎) ∈ V) & ⊢ (𝜑 → (𝐹 “ 𝑏) ∈ V) ⇒ ⊢ (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | f1opw 6160* |
A one-to-one mapping induces a one-to-one mapping on power sets.
(Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario
Carneiro, 26-Jun-2015.)
|
| ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| |
| Theorem | suppssfv 6161* |
Formula building theorem for support restriction, on a function which
preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | suppssov1 6162* |
Formula building theorem for support restrictions: operator with left
annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ 𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) ⇒ ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| 2.6.13 Function operation
|
| |
| Syntax | cof 6163 |
Extend class notation to include mapping of an operation to a function
operation.
|
| class ∘𝑓 𝑅 |
| |
| Syntax | cofr 6164 |
Extend class notation to include mapping of a binary relation to a
function relation.
|
| class ∘𝑟 𝑅 |
| |
| Definition | df-of 6165* |
Define the function operation map. The definition is designed so that
if 𝑅 is a binary operation, then ∘𝑓 𝑅 is the analogous operation
on functions which corresponds to applying 𝑅 pointwise to the values
of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
|
| ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| |
| Definition | df-ofr 6166* |
Define the function relation map. The definition is designed so that if
𝑅 is a binary relation, then ∘𝑓 𝑅 is the analogous relation on
functions which is true when each element of the left function relates
to the corresponding element of the right function. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| |
| Theorem | ofeqd 6167 |
Equality theorem for function operation, deduction form. (Contributed
by SN, 11-Nov-2024.)
|
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofeq 6168 |
Equality theorem for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓
𝑆) |
| |
| Theorem | ofreq 6169 |
Equality theorem for function relation. (Contributed by Mario Carneiro,
28-Jul-2014.)
|
| ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟
𝑆) |
| |
| Theorem | ofexg 6170 |
A function operation restricted to a set is a set. (Contributed by NM,
28-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
| |
| Theorem | nfof 6171 |
Hypothesis builder for function operation. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑓
𝑅 |
| |
| Theorem | nfofr 6172 |
Hypothesis builder for function relation. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥 ∘𝑟
𝑅 |
| |
| Theorem | offval 6173* |
Value of an operation applied to two functions. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| |
| Theorem | ofrfval 6174* |
Value of a relation applied to two functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
| |
| Theorem | ofvalg 6175 |
Evaluate a function operation at a point. (Contributed by Mario
Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐶𝑅𝐷) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| |
| Theorem | ofrval 6176 |
Exhibit a function relation at a point. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝑆
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∘𝑟 𝑅𝐺 ∧ 𝑋 ∈ 𝑆) → 𝐶𝑅𝐷) |
| |
| Theorem | ofmresval 6177 |
Value of a restriction of the function operation map. (Contributed by
NM, 20-Oct-2014.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
| |
| Theorem | off 6178* |
The function operation produces a function. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
| |
| Theorem | offeq 6179* |
Convert an identity of the operation to the analogous identity on
the function operation. (Contributed by Jim Kingdon,
26-Nov-2023.)
|
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐵⟶𝑇)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶
& ⊢ (𝜑 → 𝐻:𝐶⟶𝑈)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| |
| Theorem | ofres 6180 |
Restrict the operands of a function operation to the same domain as that
of the operation itself. (Contributed by Mario Carneiro,
15-Sep-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = ((𝐹 ↾ 𝐶) ∘𝑓 𝑅(𝐺 ↾ 𝐶))) |
| |
| Theorem | offval2 6181* |
The function operation expressed as a mapping. (Contributed by Mario
Carneiro, 20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| |
| Theorem | ofrfval2 6182* |
The function relation acting on maps. (Contributed by Mario Carneiro,
20-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑥 ∈ 𝐴 𝐵𝑅𝐶)) |
| |
| Theorem | suppssof1 6183* |
Formula building theorem for support restrictions: vector operation with
left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
|
| ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
& ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍)
& ⊢ (𝜑 → 𝐴:𝐷⟶𝑉)
& ⊢ (𝜑 → 𝐵:𝐷⟶𝑅)
& ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| |
| Theorem | ofco 6184 |
The composition of a function operation with another function.
(Contributed by Mario Carneiro, 19-Dec-2014.)
|
| ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐵)
& ⊢ (𝜑 → 𝐻:𝐷⟶𝐶)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) |
| |
| Theorem | offveqb 6185* |
Equivalent expressions for equality with a function operation.
(Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro,
5-Dec-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) ⇒ ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| |
| Theorem | offveq 6186* |
Convert an identity of the operation to the analogous identity on the
function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ (𝜑 → 𝐺 Fn 𝐴)
& ⊢ (𝜑 → 𝐻 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| |
| Theorem | ofc1g 6187 |
Left operation by a constant. (Contributed by Mario Carneiro,
24-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
| |
| Theorem | ofc2g 6188 |
Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐹 Fn 𝐴)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶)
& ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
| |
| Theorem | ofc12 6189 |
Function operation on two constant functions. (Contributed by Mario
Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)})) |
| |
| Theorem | caofref 6190* |
Transfer a reflexive law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥𝑅𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∘𝑟 𝑅𝐹) |
| |
| Theorem | caofinvl 6191* |
Transfer a left inverse law to the function operation. (Contributed
by NM, 22-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝑁:𝑆⟶𝑆)
& ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) ⇒ ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |
| |
| Theorem | caofid0l 6192* |
Transfer a left identity law to the function operation.
(Contributed by NM, 21-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝑥) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = 𝐹) |
| |
| Theorem | caofid0r 6193* |
Transfer a right identity law to the function operation.
(Contributed by NM, 21-Oct-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅(𝐴 × {𝐵})) = 𝐹) |
| |
| Theorem | caofid1 6194* |
Transfer a right absorption law to the function operation.
(Contributed by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
| |
| Theorem | caofid2 6195* |
Transfer a right absorption law to the function operation.
(Contributed by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐶 ∈ 𝑋)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹) = (𝐴 × {𝐶})) |
| |
| Theorem | caofcom 6196* |
Transfer a commutative law to the function operation. (Contributed by
Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
| |
| Theorem | caofrss 6197* |
Transfer a relation subset law to the function relation. (Contributed
by Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
| |
| Theorem | caoftrn 6198* |
Transfer a transitivity law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑟 𝑅𝐺 ∧ 𝐺 ∘𝑟 𝑇𝐻) → 𝐹 ∘𝑟 𝑈𝐻)) |
| |
| Theorem | caofdig 6199* |
Transfer a distributive law to the function operation. (Contributed
by Mario Carneiro, 26-Jul-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐹:𝐴⟶𝐾)
& ⊢ (𝜑 → 𝐺:𝐴⟶𝑆)
& ⊢ (𝜑 → 𝐻:𝐴⟶𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) ∈ 𝑉)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑇𝑦) ∈ 𝑊)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
| |
| 2.6.14 Functions (continued)
|
| |
| Theorem | resfunexgALT 6200 |
The restriction of a function to a set exists. Compare Proposition 6.17
of [TakeutiZaring] p. 28. This
version has a shorter proof than
resfunexg 5812 but requires ax-pow 4222 and ax-un 4484. (Contributed by NM,
7-Apr-1995.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |