ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1st GIF version

Theorem op1st 6245
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4280 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 1stvalg 6241 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
71, 2op1sta 5173 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
86, 7eqtri 2227 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cop 3641   cuni 3856  dom cdm 4683  cfv 5280  1st c1st 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fv 5288  df-1st 6239
This theorem is referenced by:  op1std  6247  op1stg  6249  1stval2  6254  fo1stresm  6260  eloprabi  6295  algrflem  6328  xpmapenlem  6961  genpelvl  7645  nqpru  7685  1prl  7688  addnqprlemrl  7690  addnqprlemfl  7692  addnqprlemfu  7693  mulnqprlemrl  7706  mulnqprlemfl  7708  mulnqprlemfu  7709  ltnqpr  7726  ltnqpri  7727  ltexprlemell  7731  recexprlemell  7755  archpr  7776  cauappcvgprlemm  7778  cauappcvgprlemopl  7779  cauappcvgprlemlol  7780  cauappcvgprlemdisj  7784  cauappcvgprlemloc  7785  cauappcvgprlemladdfl  7788  cauappcvgprlemladdru  7789  cauappcvgprlemladdrl  7790  cauappcvgprlem1  7792  cauappcvgprlem2  7793  caucvgprlemm  7801  caucvgprlemopl  7802  caucvgprlemlol  7803  caucvgprlemdisj  7807  caucvgprlemloc  7808  caucvgprlem2  7813  caucvgprprlemell  7818  caucvgprprlemml  7827  caucvgprprlemopu  7832  ctiunctlemfo  12885
  Copyright terms: Public domain W3C validator