ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1st GIF version

Theorem op1st 6125
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4213 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 424 . . 3 𝐴, 𝐵⟩ ∈ V
5 1stvalg 6121 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
71, 2op1sta 5092 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
86, 7eqtri 2191 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  cop 3586   cuni 3796  dom cdm 4611  cfv 5198  1st c1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119
This theorem is referenced by:  op1std  6127  op1stg  6129  1stval2  6134  fo1stresm  6140  eloprabi  6175  algrflem  6208  xpmapenlem  6827  genpelvl  7474  nqpru  7514  1prl  7517  addnqprlemrl  7519  addnqprlemfl  7521  addnqprlemfu  7522  mulnqprlemrl  7535  mulnqprlemfl  7537  mulnqprlemfu  7538  ltnqpr  7555  ltnqpri  7556  ltexprlemell  7560  recexprlemell  7584  archpr  7605  cauappcvgprlemm  7607  cauappcvgprlemopl  7608  cauappcvgprlemlol  7609  cauappcvgprlemdisj  7613  cauappcvgprlemloc  7614  cauappcvgprlemladdfl  7617  cauappcvgprlemladdru  7618  cauappcvgprlemladdrl  7619  cauappcvgprlem1  7621  cauappcvgprlem2  7622  caucvgprlemm  7630  caucvgprlemopl  7631  caucvgprlemlol  7632  caucvgprlemdisj  7636  caucvgprlemloc  7637  caucvgprlem2  7642  caucvgprprlemell  7647  caucvgprprlemml  7656  caucvgprprlemopu  7661  ctiunctlemfo  12394
  Copyright terms: Public domain W3C validator