ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1st GIF version

Theorem op1st 6231
Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op1st (1st ‘⟨𝐴, 𝐵⟩) = 𝐴

Proof of Theorem op1st
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4271 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 1stvalg 6227 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (1st ‘⟨𝐴, 𝐵⟩) = dom {⟨𝐴, 𝐵⟩}
71, 2op1sta 5163 . 2 dom {⟨𝐴, 𝐵⟩} = 𝐴
86, 7eqtri 2225 1 (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  Vcvv 2771  {csn 3632  cop 3635   cuni 3849  dom cdm 4674  cfv 5270  1st c1st 6223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fv 5278  df-1st 6225
This theorem is referenced by:  op1std  6233  op1stg  6235  1stval2  6240  fo1stresm  6246  eloprabi  6281  algrflem  6314  xpmapenlem  6945  genpelvl  7624  nqpru  7664  1prl  7667  addnqprlemrl  7669  addnqprlemfl  7671  addnqprlemfu  7672  mulnqprlemrl  7685  mulnqprlemfl  7687  mulnqprlemfu  7688  ltnqpr  7705  ltnqpri  7706  ltexprlemell  7710  recexprlemell  7734  archpr  7755  cauappcvgprlemm  7757  cauappcvgprlemopl  7758  cauappcvgprlemlol  7759  cauappcvgprlemdisj  7763  cauappcvgprlemloc  7764  cauappcvgprlemladdfl  7767  cauappcvgprlemladdru  7768  cauappcvgprlemladdrl  7769  cauappcvgprlem1  7771  cauappcvgprlem2  7772  caucvgprlemm  7780  caucvgprlemopl  7781  caucvgprlemlol  7782  caucvgprlemdisj  7786  caucvgprlemloc  7787  caucvgprlem2  7792  caucvgprprlemell  7797  caucvgprprlemml  7806  caucvgprprlemopu  7811  ctiunctlemfo  12752
  Copyright terms: Public domain W3C validator