| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1stres | GIF version | ||
| Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 2 | vex 2774 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 1, 2 | op1sta 5163 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑧〉} = 𝑦 |
| 4 | 3 | eleq1i 2270 | . . . . . 6 ⊢ (∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 5 | 4 | biimpri 133 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 7 | 6 | rgen2 2591 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 |
| 8 | sneq 3643 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
| 9 | 8 | dmeqd 4879 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → dom {𝑥} = dom {〈𝑦, 𝑧〉}) |
| 10 | 9 | unieqd 3860 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑧〉}) |
| 11 | 10 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴)) |
| 12 | 11 | ralxp 4820 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
| 13 | 7, 12 | mpbir 146 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
| 14 | df-1st 6225 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
| 15 | 14 | reseq1i 4954 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
| 16 | ssv 3214 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
| 17 | resmpt 5006 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 19 | 15, 18 | eqtri 2225 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
| 20 | 19 | fmpt 5729 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
| 21 | 13, 20 | mpbi 145 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ∀wral 2483 Vcvv 2771 ⊆ wss 3165 {csn 3632 〈cop 3635 ∪ cuni 3849 ↦ cmpt 4104 × cxp 4672 dom cdm 4674 ↾ cres 4676 ⟶wf 5266 1st c1st 6223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-1st 6225 |
| This theorem is referenced by: fo1stresm 6246 1stcof 6248 tx1cn 14683 |
| Copyright terms: Public domain | W3C validator |