![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1stres | GIF version |
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 2742 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op1sta 5112 | . . . . . . 7 ⊢ ∪ dom {⟨𝑦, 𝑧⟩} = 𝑦 |
4 | 3 | eleq1i 2243 | . . . . . 6 ⊢ (∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
5 | 4 | biimpri 133 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴) |
7 | 6 | rgen2 2563 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴 |
8 | sneq 3605 | . . . . . . 7 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩}) | |
9 | 8 | dmeqd 4831 | . . . . . 6 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩}) |
10 | 9 | unieqd 3822 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ∪ dom {𝑥} = ∪ dom {⟨𝑦, 𝑧⟩}) |
11 | 10 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)) |
12 | 11 | ralxp 4772 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {⟨𝑦, 𝑧⟩} ∈ 𝐴) |
13 | 7, 12 | mpbir 146 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
14 | df-1st 6143 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
15 | 14 | reseq1i 4905 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 3179 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 4957 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
19 | 15, 18 | eqtri 2198 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
20 | 19 | fmpt 5668 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
21 | 13, 20 | mpbi 145 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ⊆ wss 3131 {csn 3594 ⟨cop 3597 ∪ cuni 3811 ↦ cmpt 4066 × cxp 4626 dom cdm 4628 ↾ cres 4630 ⟶wf 5214 1st c1st 6141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-1st 6143 |
This theorem is referenced by: fo1stresm 6164 1stcof 6166 tx1cn 13854 |
Copyright terms: Public domain | W3C validator |