![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1stres | GIF version |
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f1stres | ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 2763 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op1sta 5148 | . . . . . . 7 ⊢ ∪ dom {〈𝑦, 𝑧〉} = 𝑦 |
4 | 3 | eleq1i 2259 | . . . . . 6 ⊢ (∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
5 | 4 | biimpri 133 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
7 | 6 | rgen2 2580 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴 |
8 | sneq 3630 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
9 | 8 | dmeqd 4865 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → dom {𝑥} = dom {〈𝑦, 𝑧〉}) |
10 | 9 | unieqd 3847 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ dom {𝑥} = ∪ dom {〈𝑦, 𝑧〉}) |
11 | 10 | eleq1d 2262 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ dom {𝑥} ∈ 𝐴 ↔ ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴)) |
12 | 11 | ralxp 4806 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ dom {〈𝑦, 𝑧〉} ∈ 𝐴) |
13 | 7, 12 | mpbir 146 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 |
14 | df-1st 6195 | . . . . 5 ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | |
15 | 14 | reseq1i 4939 | . . . 4 ⊢ (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 3202 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 4991 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
19 | 15, 18 | eqtri 2214 | . . 3 ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ dom {𝑥}) |
20 | 19 | fmpt 5709 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴) |
21 | 13, 20 | mpbi 145 | 1 ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⊆ wss 3154 {csn 3619 〈cop 3622 ∪ cuni 3836 ↦ cmpt 4091 × cxp 4658 dom cdm 4660 ↾ cres 4662 ⟶wf 5251 1st c1st 6193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-1st 6195 |
This theorem is referenced by: fo1stresm 6216 1stcof 6218 tx1cn 14448 |
Copyright terms: Public domain | W3C validator |