ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1stres GIF version

Theorem f1stres 6184
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f1stres (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴

Proof of Theorem f1stres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . . . . 8 𝑦 ∈ V
2 vex 2755 . . . . . . . 8 𝑧 ∈ V
31, 2op1sta 5128 . . . . . . 7 dom {⟨𝑦, 𝑧⟩} = 𝑦
43eleq1i 2255 . . . . . 6 ( dom {⟨𝑦, 𝑧⟩} ∈ 𝐴𝑦𝐴)
54biimpri 133 . . . . 5 (𝑦𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
65adantr 276 . . . 4 ((𝑦𝐴𝑧𝐵) → dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
76rgen2 2576 . . 3 𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴
8 sneq 3618 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98dmeqd 4847 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
109unieqd 3835 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → dom {𝑥} = dom {⟨𝑦, 𝑧⟩})
1110eleq1d 2258 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( dom {𝑥} ∈ 𝐴 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴))
1211ralxp 4788 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ ∀𝑦𝐴𝑧𝐵 dom {⟨𝑦, 𝑧⟩} ∈ 𝐴)
137, 12mpbir 146 . 2 𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴
14 df-1st 6165 . . . . 5 1st = (𝑥 ∈ V ↦ dom {𝑥})
1514reseq1i 4921 . . . 4 (1st ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3192 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 4973 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ dom {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
1915, 18eqtri 2210 . . 3 (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ dom {𝑥})
2019fmpt 5687 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) dom {𝑥} ∈ 𝐴 ↔ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴)
2113, 20mpbi 145 1 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  wss 3144  {csn 3607  cop 3610   cuni 3824  cmpt 4079   × cxp 4642  dom cdm 4644  cres 4646  wf 5231  1st c1st 6163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-1st 6165
This theorem is referenced by:  fo1stresm  6186  1stcof  6188  tx1cn  14229
  Copyright terms: Public domain W3C validator