ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj GIF version

Theorem caseinj 6967
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r (𝜑 → Fun 𝑅)
caseinj.s (𝜑 → Fun 𝑆)
caseinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
caseinj (𝜑 → Fun case(𝑅, 𝑆))

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 6925 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
21funmpt2 5157 . . . . . 6 Fun inl
3 funcnvcnv 5177 . . . . . 6 (Fun inl → Fun inl)
42, 3ax-mp 5 . . . . 5 Fun inl
5 caseinj.r . . . . 5 (𝜑 → Fun 𝑅)
6 funco 5158 . . . . 5 ((Fun inl ∧ Fun 𝑅) → Fun (inl ∘ 𝑅))
74, 5, 6sylancr 410 . . . 4 (𝜑 → Fun (inl ∘ 𝑅))
8 cnvco 4719 . . . . 5 (𝑅inl) = (inl ∘ 𝑅)
98funeqi 5139 . . . 4 (Fun (𝑅inl) ↔ Fun (inl ∘ 𝑅))
107, 9sylibr 133 . . 3 (𝜑 → Fun (𝑅inl))
11 df-inr 6926 . . . . . . 7 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
1211funmpt2 5157 . . . . . 6 Fun inr
13 funcnvcnv 5177 . . . . . 6 (Fun inr → Fun inr)
1412, 13ax-mp 5 . . . . 5 Fun inr
15 caseinj.s . . . . 5 (𝜑 → Fun 𝑆)
16 funco 5158 . . . . 5 ((Fun inr ∧ Fun 𝑆) → Fun (inr ∘ 𝑆))
1714, 15, 16sylancr 410 . . . 4 (𝜑 → Fun (inr ∘ 𝑆))
18 cnvco 4719 . . . . 5 (𝑆inr) = (inr ∘ 𝑆)
1918funeqi 5139 . . . 4 (Fun (𝑆inr) ↔ Fun (inr ∘ 𝑆))
2017, 19sylibr 133 . . 3 (𝜑 → Fun (𝑆inr))
21 df-rn 4545 . . . . . . 7 ran (𝑅inl) = dom (𝑅inl)
22 rncoss 4804 . . . . . . 7 ran (𝑅inl) ⊆ ran 𝑅
2321, 22eqsstrri 3125 . . . . . 6 dom (𝑅inl) ⊆ ran 𝑅
24 df-rn 4545 . . . . . . 7 ran (𝑆inr) = dom (𝑆inr)
25 rncoss 4804 . . . . . . 7 ran (𝑆inr) ⊆ ran 𝑆
2624, 25eqsstrri 3125 . . . . . 6 dom (𝑆inr) ⊆ ran 𝑆
27 ss2in 3299 . . . . . 6 ((dom (𝑅inl) ⊆ ran 𝑅 ∧ dom (𝑆inr) ⊆ ran 𝑆) → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆))
2823, 26, 27mp2an 422 . . . . 5 (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)
29 caseinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3028, 29sseqtrid 3142 . . . 4 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅)
31 ss0 3398 . . . 4 ((dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅ → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
3230, 31syl 14 . . 3 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
33 funun 5162 . . 3 (((Fun (𝑅inl) ∧ Fun (𝑆inr)) ∧ (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅) → Fun ((𝑅inl) ∪ (𝑆inr)))
3410, 20, 32, 33syl21anc 1215 . 2 (𝜑 → Fun ((𝑅inl) ∪ (𝑆inr)))
35 df-case 6962 . . . . 5 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3635cnveqi 4709 . . . 4 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
37 cnvun 4939 . . . 4 ((𝑅inl) ∪ (𝑆inr)) = ((𝑅inl) ∪ (𝑆inr))
3836, 37eqtri 2158 . . 3 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3938funeqi 5139 . 2 (Fun case(𝑅, 𝑆) ↔ Fun ((𝑅inl) ∪ (𝑆inr)))
4034, 39sylibr 133 1 (𝜑 → Fun case(𝑅, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  Vcvv 2681  cun 3064  cin 3065  wss 3066  c0 3358  cop 3525  ccnv 4533  dom cdm 4534  ran crn 4535  ccom 4538  Fun wfun 5112  1oc1o 6299  inlcinl 6923  inrcinr 6924  casecdjucase 6961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-inl 6925  df-inr 6926  df-case 6962
This theorem is referenced by:  casef1  6968
  Copyright terms: Public domain W3C validator