ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj GIF version

Theorem caseinj 7164
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r (𝜑 → Fun 𝑅)
caseinj.s (𝜑 → Fun 𝑆)
caseinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
caseinj (𝜑 → Fun case(𝑅, 𝑆))

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 7122 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
21funmpt2 5298 . . . . . 6 Fun inl
3 funcnvcnv 5318 . . . . . 6 (Fun inl → Fun inl)
42, 3ax-mp 5 . . . . 5 Fun inl
5 caseinj.r . . . . 5 (𝜑 → Fun 𝑅)
6 funco 5299 . . . . 5 ((Fun inl ∧ Fun 𝑅) → Fun (inl ∘ 𝑅))
74, 5, 6sylancr 414 . . . 4 (𝜑 → Fun (inl ∘ 𝑅))
8 cnvco 4852 . . . . 5 (𝑅inl) = (inl ∘ 𝑅)
98funeqi 5280 . . . 4 (Fun (𝑅inl) ↔ Fun (inl ∘ 𝑅))
107, 9sylibr 134 . . 3 (𝜑 → Fun (𝑅inl))
11 df-inr 7123 . . . . . . 7 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
1211funmpt2 5298 . . . . . 6 Fun inr
13 funcnvcnv 5318 . . . . . 6 (Fun inr → Fun inr)
1412, 13ax-mp 5 . . . . 5 Fun inr
15 caseinj.s . . . . 5 (𝜑 → Fun 𝑆)
16 funco 5299 . . . . 5 ((Fun inr ∧ Fun 𝑆) → Fun (inr ∘ 𝑆))
1714, 15, 16sylancr 414 . . . 4 (𝜑 → Fun (inr ∘ 𝑆))
18 cnvco 4852 . . . . 5 (𝑆inr) = (inr ∘ 𝑆)
1918funeqi 5280 . . . 4 (Fun (𝑆inr) ↔ Fun (inr ∘ 𝑆))
2017, 19sylibr 134 . . 3 (𝜑 → Fun (𝑆inr))
21 df-rn 4675 . . . . . . 7 ran (𝑅inl) = dom (𝑅inl)
22 rncoss 4937 . . . . . . 7 ran (𝑅inl) ⊆ ran 𝑅
2321, 22eqsstrri 3217 . . . . . 6 dom (𝑅inl) ⊆ ran 𝑅
24 df-rn 4675 . . . . . . 7 ran (𝑆inr) = dom (𝑆inr)
25 rncoss 4937 . . . . . . 7 ran (𝑆inr) ⊆ ran 𝑆
2624, 25eqsstrri 3217 . . . . . 6 dom (𝑆inr) ⊆ ran 𝑆
27 ss2in 3392 . . . . . 6 ((dom (𝑅inl) ⊆ ran 𝑅 ∧ dom (𝑆inr) ⊆ ran 𝑆) → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆))
2823, 26, 27mp2an 426 . . . . 5 (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)
29 caseinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3028, 29sseqtrid 3234 . . . 4 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅)
31 ss0 3492 . . . 4 ((dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅ → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
3230, 31syl 14 . . 3 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
33 funun 5303 . . 3 (((Fun (𝑅inl) ∧ Fun (𝑆inr)) ∧ (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅) → Fun ((𝑅inl) ∪ (𝑆inr)))
3410, 20, 32, 33syl21anc 1248 . 2 (𝜑 → Fun ((𝑅inl) ∪ (𝑆inr)))
35 df-case 7159 . . . . 5 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3635cnveqi 4842 . . . 4 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
37 cnvun 5076 . . . 4 ((𝑅inl) ∪ (𝑆inr)) = ((𝑅inl) ∪ (𝑆inr))
3836, 37eqtri 2217 . . 3 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3938funeqi 5280 . 2 (Fun case(𝑅, 𝑆) ↔ Fun ((𝑅inl) ∪ (𝑆inr)))
4034, 39sylibr 134 1 (𝜑 → Fun case(𝑅, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2763  cun 3155  cin 3156  wss 3157  c0 3451  cop 3626  ccnv 4663  dom cdm 4664  ran crn 4665  ccom 4668  Fun wfun 5253  1oc1o 6476  inlcinl 7120  inrcinr 7121  casecdjucase 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by:  casef1  7165
  Copyright terms: Public domain W3C validator