ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj GIF version

Theorem caseinj 7148
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r (𝜑 → Fun 𝑅)
caseinj.s (𝜑 → Fun 𝑆)
caseinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
caseinj (𝜑 → Fun case(𝑅, 𝑆))

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 7106 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
21funmpt2 5293 . . . . . 6 Fun inl
3 funcnvcnv 5313 . . . . . 6 (Fun inl → Fun inl)
42, 3ax-mp 5 . . . . 5 Fun inl
5 caseinj.r . . . . 5 (𝜑 → Fun 𝑅)
6 funco 5294 . . . . 5 ((Fun inl ∧ Fun 𝑅) → Fun (inl ∘ 𝑅))
74, 5, 6sylancr 414 . . . 4 (𝜑 → Fun (inl ∘ 𝑅))
8 cnvco 4847 . . . . 5 (𝑅inl) = (inl ∘ 𝑅)
98funeqi 5275 . . . 4 (Fun (𝑅inl) ↔ Fun (inl ∘ 𝑅))
107, 9sylibr 134 . . 3 (𝜑 → Fun (𝑅inl))
11 df-inr 7107 . . . . . . 7 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
1211funmpt2 5293 . . . . . 6 Fun inr
13 funcnvcnv 5313 . . . . . 6 (Fun inr → Fun inr)
1412, 13ax-mp 5 . . . . 5 Fun inr
15 caseinj.s . . . . 5 (𝜑 → Fun 𝑆)
16 funco 5294 . . . . 5 ((Fun inr ∧ Fun 𝑆) → Fun (inr ∘ 𝑆))
1714, 15, 16sylancr 414 . . . 4 (𝜑 → Fun (inr ∘ 𝑆))
18 cnvco 4847 . . . . 5 (𝑆inr) = (inr ∘ 𝑆)
1918funeqi 5275 . . . 4 (Fun (𝑆inr) ↔ Fun (inr ∘ 𝑆))
2017, 19sylibr 134 . . 3 (𝜑 → Fun (𝑆inr))
21 df-rn 4670 . . . . . . 7 ran (𝑅inl) = dom (𝑅inl)
22 rncoss 4932 . . . . . . 7 ran (𝑅inl) ⊆ ran 𝑅
2321, 22eqsstrri 3212 . . . . . 6 dom (𝑅inl) ⊆ ran 𝑅
24 df-rn 4670 . . . . . . 7 ran (𝑆inr) = dom (𝑆inr)
25 rncoss 4932 . . . . . . 7 ran (𝑆inr) ⊆ ran 𝑆
2624, 25eqsstrri 3212 . . . . . 6 dom (𝑆inr) ⊆ ran 𝑆
27 ss2in 3387 . . . . . 6 ((dom (𝑅inl) ⊆ ran 𝑅 ∧ dom (𝑆inr) ⊆ ran 𝑆) → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆))
2823, 26, 27mp2an 426 . . . . 5 (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)
29 caseinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3028, 29sseqtrid 3229 . . . 4 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅)
31 ss0 3487 . . . 4 ((dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅ → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
3230, 31syl 14 . . 3 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
33 funun 5298 . . 3 (((Fun (𝑅inl) ∧ Fun (𝑆inr)) ∧ (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅) → Fun ((𝑅inl) ∪ (𝑆inr)))
3410, 20, 32, 33syl21anc 1248 . 2 (𝜑 → Fun ((𝑅inl) ∪ (𝑆inr)))
35 df-case 7143 . . . . 5 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3635cnveqi 4837 . . . 4 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
37 cnvun 5071 . . . 4 ((𝑅inl) ∪ (𝑆inr)) = ((𝑅inl) ∪ (𝑆inr))
3836, 37eqtri 2214 . . 3 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3938funeqi 5275 . 2 (Fun case(𝑅, 𝑆) ↔ Fun ((𝑅inl) ∪ (𝑆inr)))
4034, 39sylibr 134 1 (𝜑 → Fun case(𝑅, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cun 3151  cin 3152  wss 3153  c0 3446  cop 3621  ccnv 4658  dom cdm 4659  ran crn 4660  ccom 4663  Fun wfun 5248  1oc1o 6462  inlcinl 7104  inrcinr 7105  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  casef1  7149
  Copyright terms: Public domain W3C validator