ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinj GIF version

Theorem caseinj 6982
Description: The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
caseinj.r (𝜑 → Fun 𝑅)
caseinj.s (𝜑 → Fun 𝑆)
caseinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
caseinj (𝜑 → Fun case(𝑅, 𝑆))

Proof of Theorem caseinj
StepHypRef Expression
1 df-inl 6940 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
21funmpt2 5170 . . . . . 6 Fun inl
3 funcnvcnv 5190 . . . . . 6 (Fun inl → Fun inl)
42, 3ax-mp 5 . . . . 5 Fun inl
5 caseinj.r . . . . 5 (𝜑 → Fun 𝑅)
6 funco 5171 . . . . 5 ((Fun inl ∧ Fun 𝑅) → Fun (inl ∘ 𝑅))
74, 5, 6sylancr 411 . . . 4 (𝜑 → Fun (inl ∘ 𝑅))
8 cnvco 4732 . . . . 5 (𝑅inl) = (inl ∘ 𝑅)
98funeqi 5152 . . . 4 (Fun (𝑅inl) ↔ Fun (inl ∘ 𝑅))
107, 9sylibr 133 . . 3 (𝜑 → Fun (𝑅inl))
11 df-inr 6941 . . . . . . 7 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
1211funmpt2 5170 . . . . . 6 Fun inr
13 funcnvcnv 5190 . . . . . 6 (Fun inr → Fun inr)
1412, 13ax-mp 5 . . . . 5 Fun inr
15 caseinj.s . . . . 5 (𝜑 → Fun 𝑆)
16 funco 5171 . . . . 5 ((Fun inr ∧ Fun 𝑆) → Fun (inr ∘ 𝑆))
1714, 15, 16sylancr 411 . . . 4 (𝜑 → Fun (inr ∘ 𝑆))
18 cnvco 4732 . . . . 5 (𝑆inr) = (inr ∘ 𝑆)
1918funeqi 5152 . . . 4 (Fun (𝑆inr) ↔ Fun (inr ∘ 𝑆))
2017, 19sylibr 133 . . 3 (𝜑 → Fun (𝑆inr))
21 df-rn 4558 . . . . . . 7 ran (𝑅inl) = dom (𝑅inl)
22 rncoss 4817 . . . . . . 7 ran (𝑅inl) ⊆ ran 𝑅
2321, 22eqsstrri 3135 . . . . . 6 dom (𝑅inl) ⊆ ran 𝑅
24 df-rn 4558 . . . . . . 7 ran (𝑆inr) = dom (𝑆inr)
25 rncoss 4817 . . . . . . 7 ran (𝑆inr) ⊆ ran 𝑆
2624, 25eqsstrri 3135 . . . . . 6 dom (𝑆inr) ⊆ ran 𝑆
27 ss2in 3309 . . . . . 6 ((dom (𝑅inl) ⊆ ran 𝑅 ∧ dom (𝑆inr) ⊆ ran 𝑆) → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆))
2823, 26, 27mp2an 423 . . . . 5 (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)
29 caseinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3028, 29sseqtrid 3152 . . . 4 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅)
31 ss0 3408 . . . 4 ((dom (𝑅inl) ∩ dom (𝑆inr)) ⊆ ∅ → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
3230, 31syl 14 . . 3 (𝜑 → (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅)
33 funun 5175 . . 3 (((Fun (𝑅inl) ∧ Fun (𝑆inr)) ∧ (dom (𝑅inl) ∩ dom (𝑆inr)) = ∅) → Fun ((𝑅inl) ∪ (𝑆inr)))
3410, 20, 32, 33syl21anc 1216 . 2 (𝜑 → Fun ((𝑅inl) ∪ (𝑆inr)))
35 df-case 6977 . . . . 5 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3635cnveqi 4722 . . . 4 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
37 cnvun 4952 . . . 4 ((𝑅inl) ∪ (𝑆inr)) = ((𝑅inl) ∪ (𝑆inr))
3836, 37eqtri 2161 . . 3 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
3938funeqi 5152 . 2 (Fun case(𝑅, 𝑆) ↔ Fun ((𝑅inl) ∪ (𝑆inr)))
4034, 39sylibr 133 1 (𝜑 → Fun case(𝑅, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  Vcvv 2689  cun 3074  cin 3075  wss 3076  c0 3368  cop 3535  ccnv 4546  dom cdm 4547  ran crn 4548  ccom 4551  Fun wfun 5125  1oc1o 6314  inlcinl 6938  inrcinr 6939  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef1  6983
  Copyright terms: Public domain W3C validator