Proof of Theorem caseinj
| Step | Hyp | Ref
| Expression |
| 1 | | df-inl 7122 |
. . . . . . 7
⊢ inl =
(𝑦 ∈ V ↦
〈∅, 𝑦〉) |
| 2 | 1 | funmpt2 5298 |
. . . . . 6
⊢ Fun
inl |
| 3 | | funcnvcnv 5318 |
. . . . . 6
⊢ (Fun inl
→ Fun ◡◡inl) |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ Fun ◡◡inl |
| 5 | | caseinj.r |
. . . . 5
⊢ (𝜑 → Fun ◡𝑅) |
| 6 | | funco 5299 |
. . . . 5
⊢ ((Fun
◡◡inl ∧ Fun ◡𝑅) → Fun (◡◡inl
∘ ◡𝑅)) |
| 7 | 4, 5, 6 | sylancr 414 |
. . . 4
⊢ (𝜑 → Fun (◡◡inl
∘ ◡𝑅)) |
| 8 | | cnvco 4852 |
. . . . 5
⊢ ◡(𝑅 ∘ ◡inl) = (◡◡inl
∘ ◡𝑅) |
| 9 | 8 | funeqi 5280 |
. . . 4
⊢ (Fun
◡(𝑅 ∘ ◡inl) ↔ Fun (◡◡inl
∘ ◡𝑅)) |
| 10 | 7, 9 | sylibr 134 |
. . 3
⊢ (𝜑 → Fun ◡(𝑅 ∘ ◡inl)) |
| 11 | | df-inr 7123 |
. . . . . . 7
⊢ inr =
(𝑥 ∈ V ↦
〈1o, 𝑥〉) |
| 12 | 11 | funmpt2 5298 |
. . . . . 6
⊢ Fun
inr |
| 13 | | funcnvcnv 5318 |
. . . . . 6
⊢ (Fun inr
→ Fun ◡◡inr) |
| 14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢ Fun ◡◡inr |
| 15 | | caseinj.s |
. . . . 5
⊢ (𝜑 → Fun ◡𝑆) |
| 16 | | funco 5299 |
. . . . 5
⊢ ((Fun
◡◡inr ∧ Fun ◡𝑆) → Fun (◡◡inr
∘ ◡𝑆)) |
| 17 | 14, 15, 16 | sylancr 414 |
. . . 4
⊢ (𝜑 → Fun (◡◡inr
∘ ◡𝑆)) |
| 18 | | cnvco 4852 |
. . . . 5
⊢ ◡(𝑆 ∘ ◡inr) = (◡◡inr
∘ ◡𝑆) |
| 19 | 18 | funeqi 5280 |
. . . 4
⊢ (Fun
◡(𝑆 ∘ ◡inr) ↔ Fun (◡◡inr
∘ ◡𝑆)) |
| 20 | 17, 19 | sylibr 134 |
. . 3
⊢ (𝜑 → Fun ◡(𝑆 ∘ ◡inr)) |
| 21 | | df-rn 4675 |
. . . . . . 7
⊢ ran
(𝑅 ∘ ◡inl) = dom ◡(𝑅 ∘ ◡inl) |
| 22 | | rncoss 4937 |
. . . . . . 7
⊢ ran
(𝑅 ∘ ◡inl) ⊆ ran 𝑅 |
| 23 | 21, 22 | eqsstrri 3217 |
. . . . . 6
⊢ dom ◡(𝑅 ∘ ◡inl) ⊆ ran 𝑅 |
| 24 | | df-rn 4675 |
. . . . . . 7
⊢ ran
(𝑆 ∘ ◡inr) = dom ◡(𝑆 ∘ ◡inr) |
| 25 | | rncoss 4937 |
. . . . . . 7
⊢ ran
(𝑆 ∘ ◡inr) ⊆ ran 𝑆 |
| 26 | 24, 25 | eqsstrri 3217 |
. . . . . 6
⊢ dom ◡(𝑆 ∘ ◡inr) ⊆ ran 𝑆 |
| 27 | | ss2in 3392 |
. . . . . 6
⊢ ((dom
◡(𝑅 ∘ ◡inl) ⊆ ran 𝑅 ∧ dom ◡(𝑆 ∘ ◡inr) ⊆ ran 𝑆) → (dom ◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) ⊆ (ran 𝑅 ∩ ran 𝑆)) |
| 28 | 23, 26, 27 | mp2an 426 |
. . . . 5
⊢ (dom
◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) ⊆ (ran 𝑅 ∩ ran 𝑆) |
| 29 | | caseinj.disj |
. . . . 5
⊢ (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅) |
| 30 | 28, 29 | sseqtrid 3234 |
. . . 4
⊢ (𝜑 → (dom ◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) ⊆ ∅) |
| 31 | | ss0 3492 |
. . . 4
⊢ ((dom
◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) ⊆ ∅ → (dom ◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) = ∅) |
| 32 | 30, 31 | syl 14 |
. . 3
⊢ (𝜑 → (dom ◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) = ∅) |
| 33 | | funun 5303 |
. . 3
⊢ (((Fun
◡(𝑅 ∘ ◡inl) ∧ Fun ◡(𝑆 ∘ ◡inr)) ∧ (dom ◡(𝑅 ∘ ◡inl) ∩ dom ◡(𝑆 ∘ ◡inr)) = ∅) → Fun (◡(𝑅 ∘ ◡inl) ∪ ◡(𝑆 ∘ ◡inr))) |
| 34 | 10, 20, 32, 33 | syl21anc 1248 |
. 2
⊢ (𝜑 → Fun (◡(𝑅 ∘ ◡inl) ∪ ◡(𝑆 ∘ ◡inr))) |
| 35 | | df-case 7159 |
. . . . 5
⊢
case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 36 | 35 | cnveqi 4842 |
. . . 4
⊢ ◡case(𝑅, 𝑆) = ◡((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 37 | | cnvun 5076 |
. . . 4
⊢ ◡((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) = (◡(𝑅 ∘ ◡inl) ∪ ◡(𝑆 ∘ ◡inr)) |
| 38 | 36, 37 | eqtri 2217 |
. . 3
⊢ ◡case(𝑅, 𝑆) = (◡(𝑅 ∘ ◡inl) ∪ ◡(𝑆 ∘ ◡inr)) |
| 39 | 38 | funeqi 5280 |
. 2
⊢ (Fun
◡case(𝑅, 𝑆) ↔ Fun (◡(𝑅 ∘ ◡inl) ∪ ◡(𝑆 ∘ ◡inr))) |
| 40 | 34, 39 | sylibr 134 |
1
⊢ (𝜑 → Fun ◡case(𝑅, 𝑆)) |