| Intuitionistic Logic Explorer Theorem List (p. 71 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fidifsnid 7001 | If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3793 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) | ||
| Theorem | nnfi 7002 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
| Theorem | enfi 7003 | Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
| Theorem | enfii 7004 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | ssfilem 7005* | Lemma for ssfiexmid 7006. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| ⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | ssfiexmid 7006* | If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.) |
| ⊢ ∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | infiexmid 7007* | If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ (𝑥 ∈ Fin → (𝑥 ∩ 𝑦) ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | domfiexmid 7008* | If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | dif1en 7009 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1enen 7010 | Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) | ||
| Theorem | fiunsnnn 7011 | Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
| ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) | ||
| Theorem | php5fin 7012 | A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) | ||
| Theorem | fisbth 7013 | Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.) |
| ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
| Theorem | 0fin 7014 | The empty set is finite. (Contributed by FL, 14-Jul-2008.) |
| ⊢ ∅ ∈ Fin | ||
| Theorem | fin0 7015* | A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | fin0or 7016* | A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | diffitest 7017* | If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.) |
| ⊢ ∀𝑎 ∈ Fin ∀𝑏(𝑎 ∖ 𝑏) ∈ Fin ⇒ ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | ||
| Theorem | findcard 7018* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2 7019* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2s 7020* | Variation of findcard2 7019 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2d 7021* | Deduction version of findcard2 7019. If you also need 𝑦 ∈ Fin (which doesn't come for free due to ssfiexmid 7006), use findcard2sd 7022 instead. (Contributed by SO, 16-Jul-2018.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | findcard2sd 7022* | Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | diffisn 7023 | Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin) | ||
| Theorem | diffifi 7024 | Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | infnfi 7025 | An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | ||
| Theorem | ominf 7026 | The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6888. (Contributed by NM, 2-Jun-1998.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | isinfinf 7027* | An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| ⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | ac6sfi 7028* | Existence of a choice function for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | tridc 7029* | A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.) |
| ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → DECID 𝐵𝑅𝐶) | ||
| Theorem | fimax2gtrilemstep 7030* | Lemma for fimax2gtri 7031. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
| ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑉 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ 𝑈 ¬ 𝑍𝑅𝑦) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦) | ||
| Theorem | fimax2gtri 7031* | A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.) |
| ⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | finexdc 7032* | Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | dfrex2fin 7033* | Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | ||
| Theorem | infm 7034* | An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
| ⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | infn0 7035 | An infinite set is not empty. (Contributed by NM, 23-Oct-2004.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | inffiexmid 7036* | If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
| ⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | en2eqpr 7037 | Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) | ||
| Theorem | exmidpw 7038 | Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.) |
| ⊢ (EXMID ↔ 𝒫 1o ≈ 2o) | ||
| Theorem | exmidpweq 7039 | Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.) |
| ⊢ (EXMID ↔ 𝒫 1o = 2o) | ||
| Theorem | pw1fin 7040 | Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.) |
| ⊢ (EXMID ↔ 𝒫 1o ∈ Fin) | ||
| Theorem | pw1dc0el 7041 | Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥) | ||
| Theorem | exmidpw2en 7042 |
The power set of a set being equinumerous to set exponentiation with a
base of ordinal 2o is equivalent to
excluded middle. This is
Metamath 100 proof #52. The forward direction uses excluded middle
expressed as EXMID to show this
equinumerosity.
The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) | ||
| Theorem | ss1o0el1o 7043 | Reformulation of ss1o0el1 4260 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.) |
| ⊢ (𝐴 ⊆ 1o → (∅ ∈ 𝐴 ↔ 𝐴 = 1o)) | ||
| Theorem | pw1dc1 7044 | If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) | ||
| Theorem | fientri3 7045 | Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
| Theorem | nnwetri 7046* | A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
| ⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | ||
| Theorem | onunsnss 7047 | Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵 ⊆ 𝐴) | ||
| Theorem | unfiexmid 7048* | If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.) |
| ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
| Theorem | unsnfi 7049 | Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | ||
| Theorem | unsnfidcex 7050 | The 𝐵 ∈ 𝑉 condition in unsnfi 7049. This is intended to show that unsnfi 7049 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V) | ||
| Theorem | unsnfidcel 7051 | The ¬ 𝐵 ∈ 𝐴 condition in unsnfi 7049. This is intended to show that unsnfi 7049 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ 𝐴) | ||
| Theorem | unfidisj 7052 | The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | undifdcss 7053* | Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| ⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) | ||
| Theorem | undifdc 7054* | Union of complementary parts into whole. This is a case where we can strengthen undifss 3552 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) | ||
| Theorem | undiffi 7055 | Union of complementary parts into whole. This is a case where we can strengthen undifss 3552 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) | ||
| Theorem | unfiin 7056 | The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | prfidisj 7057 | A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6937. For the cases where one or both is a proper class, see prprc1 3754, prprc2 3755, or prprc 3756. (Contributed by Jim Kingdon, 31-May-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | ||
| Theorem | prfidceq 7058* | A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) | ||
| Theorem | tpfidisj 7059 | A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) | ||
| Theorem | tpfidceq 7060* | A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 DECID 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) | ||
| Theorem | fiintim 7061* |
If a class is closed under pairwise intersections, then it is closed
under nonempty finite intersections. The converse would appear to
require an additional condition, such as 𝑥 and 𝑦 not
being
equal, or 𝐴 having decidable equality.
This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
| Theorem | xpfi 7062 | The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | 3xpfi 7063 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
| ⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
| Theorem | fisseneq 7064 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | phpeqd 7065 | Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6995 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | ssfirab 7066* | A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) | ||
| Theorem | ssfidc 7067* | A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | opabfi 7068* | Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 DECID 𝜓) ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| Theorem | infidc 7069* | The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| Theorem | snon0 7070 | An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) | ||
| Theorem | fnfi 7071 | A version of fnex 5834 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | fundmfi 7072 | The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin) | ||
| Theorem | fundmfibi 7073 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
| Theorem | resfnfinfinss 7074 | The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
| Theorem | residfi 7075 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
| Theorem | relcnvfi 7076 | If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | ||
| Theorem | funrnfi 7077 | The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) | ||
| Theorem | f1ofi 7078 | If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | f1dmvrnfibi 7079 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7080. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | f1vrnfibi 7080 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 7079. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | iunfidisj 7081* | The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
| Theorem | f1finf1o 7082 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | en1eqsn 7083 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnbi 7084 | A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
| Theorem | snexxph 7085* | A case where the antecedent of snexg 4247 is not needed. The class {𝑥 ∣ 𝜑} is from dcextest 4650. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
| ⊢ {{𝑥 ∣ 𝜑}} ∈ V | ||
| Theorem | preimaf1ofi 7086 | The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
| Theorem | fidcenumlemim 7087* | Lemma for fidcenum 7091. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
| Theorem | fidcenumlemrks 7088* | Lemma for fidcenum 7091. Induction step for fidcenumlemrk 7089. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐽 ∈ ω) & ⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) & ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) | ||
| Theorem | fidcenumlemrk 7089* | Lemma for fidcenum 7091. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝐾 ⊆ 𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) | ||
| Theorem | fidcenumlemr 7090* | Lemma for fidcenum 7091. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
| Theorem | fidcenum 7091* | A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝐴 ∈ Fin ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
| Theorem | sbthlem1 7092* | Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
| Theorem | sbthlem2 7093* | Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
| Theorem | sbthlemi3 7094* | Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
| Theorem | sbthlemi4 7095* | Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
| Theorem | sbthlemi5 7096* | Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → dom 𝐻 = 𝐴) | ||
| Theorem | sbthlemi6 7097* | Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
| Theorem | sbthlem7 7098* | Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun 𝑓 ∧ Fun ◡𝑔) → Fun 𝐻) | ||
| Theorem | sbthlemi8 7099* | Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) | ||
| Theorem | sbthlemi9 7100* | Lemma for isbth 7102. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |