HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisomni 7001* The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
 
Theoremisomnimap 7002* The predicate of being omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremenomnilem 7003 Lemma for enomni 7004. One direction of the biconditional. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni → 𝐵 ∈ Omni))
 
Theoremenomni 7004 Omniscience is invariant with respect to equinumerosity. For example, this means that we can express the Limited Principle of Omniscience as either ω ∈ Omni or 0 ∈ Omni. The former is a better match to conventional notation in the sense that df2o3 6320 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 13-Jul-2022.)
(𝐴𝐵 → (𝐴 ∈ Omni ↔ 𝐵 ∈ Omni))
 
Theoremfinomni 7005 A finite set is omniscient. Remark right after Definition 3.1 of [Pierik], p. 14. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴 ∈ Fin → 𝐴 ∈ Omni)
 
Theoremexmidomniim 7006 Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7007. (Contributed by Jim Kingdon, 29-Jun-2022.)
(EXMID → ∀𝑥 𝑥 ∈ Omni)
 
Theoremexmidomni 7007 Excluded middle is equivalent to every set being omniscient. (Contributed by BJ and Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ ∀𝑥 𝑥 ∈ Omni)
 
Theoremexmidlpo 7008 Excluded middle implies the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 29-Mar-2023.)
(EXMID → ω ∈ Omni)
 
Theoremfodjuomnilemdc 7009* Lemma for fodjuomni 7014. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))       ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
 
Theoremfodjuf 7010* Lemma for fodjuomni 7014 and fodjumkv 7027. Domain and range of 𝑃. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑𝑂𝑉)       (𝜑𝑃 ∈ (2o𝑚 𝑂))
 
Theoremfodjum 7011* Lemma for fodjuomni 7014 and fodjumkv 7027. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)       (𝜑 → ∃𝑥 𝑥𝐴)
 
Theoremfodju0 7012* Lemma for fodjuomni 7014 and fodjumkv 7027. A condition which shows that 𝐴 is empty. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
(𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))    &   (𝜑 → ∀𝑤𝑂 (𝑃𝑤) = 1o)       (𝜑𝐴 = ∅)
 
Theoremfodjuomnilemres 7013* Lemma for fodjuomni 7014. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 29-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoremfodjuomni 7014* A condition which ensures 𝐴 is either inhabited or empty. Lemma 3.2 of [PradicBrown2022], p. 4. (Contributed by Jim Kingdon, 27-Jul-2022.)
(𝜑𝑂 ∈ Omni)    &   (𝜑𝐹:𝑂onto→(𝐴𝐵))       (𝜑 → (∃𝑥 𝑥𝐴𝐴 = ∅))
 
Theoreminfnninf 7015 The point at infinity in (the constant sequence equal to 1o). (Contributed by Jim Kingdon, 14-Jul-2022.)
(ω × {1o}) ∈ ℕ
 
Theoremnnnninf 7016* Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. Contrast to a sequence which is all ones as seen at infnninf 7015. Remark/TODO: the theorem still holds if 𝑁 = ω, that is, the antecedent could be weakened to 𝑁 ∈ suc ω. (Contributed by Jim Kingdon, 14-Jul-2022.)
(𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
Theoremctssexmid 7017* The decidability condition in ctssdc 6991 is needed. More specifically, ctssdc 6991 minus that condition, plus the Limited Principle of Omniscience (LPO), implies excluded middle. (Contributed by Jim Kingdon, 15-Aug-2023.)
((𝑦 ⊆ ω ∧ ∃𝑓 𝑓:𝑦onto𝑥) → ∃𝑓 𝑓:ω–onto→(𝑥 ⊔ 1o))    &   ω ∈ Omni       (𝜑 ∨ ¬ 𝜑)
 
2.6.37  Markov's principle
 
Syntaxcmarkov 7018 Extend class definition to include the class of Markov sets.
class Markov
 
Definitiondf-markov 7019* A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
 
Theoremismkv 7020* The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓(𝑓:𝐴⟶2o → (¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅))))
 
Theoremismkvmap 7021* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ∀𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = ∅)))
 
Theoremismkvnex 7022* The predicate of being Markov stated in terms of double negation and comparison with 1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
(𝐴𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝐴)(¬ ¬ ∃𝑥𝐴 (𝑓𝑥) = 1o → ∃𝑥𝐴 (𝑓𝑥) = 1o)))
 
Theoremomnimkv 7023 An omniscient set is Markov. In particular, the case where 𝐴 is ω means that the Limited Principle of Omniscience (LPO) implies Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)
(𝐴 ∈ Omni → 𝐴 ∈ Markov)
 
Theoremexmidmp 7024 Excluded middle implies Markov's Principle (MP). (Contributed by Jim Kingdon, 4-Apr-2023.)
(EXMID → ω ∈ Markov)
 
Theoremmkvprop 7025* Markov's Principle expressed in terms of propositions (or more precisely, the 𝐴 = ω case is Markov's Principle). (Contributed by Jim Kingdon, 19-Mar-2023.)
((𝐴 ∈ Markov ∧ ∀𝑛𝐴 DECID 𝜑 ∧ ¬ ∀𝑛𝐴 ¬ 𝜑) → ∃𝑛𝐴 𝜑)
 
Theoremfodjumkvlemres 7026* Lemma for fodjumkv 7027. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))    &   𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
Theoremfodjumkv 7027* A condition which ensures that a nonempty set is inhabited. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝜑𝑀 ∈ Markov)    &   (𝜑𝐹:𝑀onto→(𝐴𝐵))       (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
 
2.6.38  Cardinal numbers
 
Syntaxccrd 7028 Extend class definition to include the cardinal size function.
class card
 
Definitiondf-card 7029* Define the cardinal number function. The cardinal number of a set is the least ordinal number equinumerous to it. In other words, it is the "size" of the set. Definition of [Enderton] p. 197. Our notation is from Enderton. Other textbooks often use a double bar over the set to express this function. (Contributed by NM, 21-Oct-2003.)
card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
 
Theoremcardcl 7030* The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
 
Theoremisnumi 7031 A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
 
Theoremfinnum 7032 Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴 ∈ Fin → 𝐴 ∈ dom card)
 
Theoremonenon 7033 Every ordinal number is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
(𝐴 ∈ On → 𝐴 ∈ dom card)
 
Theoremcardval3ex 7034* The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
 
Theoremoncardval 7035* The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
(𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
 
Theoremcardonle 7036 The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
(𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
 
Theoremcard0 7037 The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.)
(card‘∅) = ∅
 
Theoremcarden2bex 7038* If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
 
Theorempm54.43 7039 Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
 
Theorempr2nelem 7040 Lemma for pr2ne 7041. (Contributed by FL, 17-Aug-2008.)
((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
 
Theorempr2ne 7041 If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
 
Theoremexmidonfinlem 7042* Lemma for exmidonfin 7043. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
𝐴 = {{𝑥 ∈ {∅} ∣ 𝜑}, {𝑥 ∈ {∅} ∣ ¬ 𝜑}}       (ω = (On ∩ Fin) → DECID 𝜑)
 
Theoremexmidonfin 7043 If a finite ordinal is a natural number, excluded middle follows. That excluded middle implies that a finite ordinal is a natural number is proved in the Metamath Proof Explorer. That a natural number is a finite ordinal is shown at nnfi 6759 and nnon 4518. (Contributed by Andrew W Swan and Jim Kingdon, 9-Mar-2024.)
(ω = (On ∩ Fin) → EXMID)
 
Theoremen2eleq 7044 Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
 
Theoremen2other2 7045 Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
 
Theoremdju1p1e2 7046 Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
(1o ⊔ 1o) ≈ 2o
 
Theoreminfpwfidom 7047 The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
 
Theoremexmidfodomrlemeldju 7048 Lemma for exmidfodomr 7053. A variant of djur 6947. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → (𝐵 = (inl‘∅) ∨ 𝐵 = (inr‘∅)))
 
Theoremexmidfodomrlemreseldju 7049 Lemma for exmidfodomrlemrALT 7052. A variant of eldju 6946. (Contributed by Jim Kingdon, 9-Jul-2022.)
(𝜑𝐴 ⊆ 1o)    &   (𝜑𝐵 ∈ (𝐴 ⊔ 1o))       (𝜑 → ((∅ ∈ 𝐴𝐵 = ((inl ↾ 𝐴)‘∅)) ∨ 𝐵 = ((inr ↾ 1o)‘∅)))
 
Theoremexmidfodomrlemim 7050* Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
Theoremexmidfodomrlemr 7051* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
TheoremexmidfodomrlemrALT 7052* The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7051. In particular, this proof uses eldju 6946 instead of djur 6947 and avoids djulclb 6933. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
 
Theoremexmidfodomr 7053* Excluded middle is equivalent to the existence of a mapping from any set onto any inhabited set that it dominates. (Contributed by Jim Kingdon, 1-Jul-2022.)
(EXMID ↔ ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
 
2.6.39  Axiom of Choice equivalents
 
Syntaxwac 7054 Formula for an abbreviation of the axiom of choice.
wff CHOICE
 
Definitiondf-ac 7055* The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4447 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
 
Theoremacfun 7056* A convenient form of choice. The goal here is to state choice as the existence of a choice function on a set of inhabited sets, while making full use of our notation around functions and function values. (Contributed by Jim Kingdon, 20-Nov-2023.)
(𝜑CHOICE)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
Theoremexmidaclem 7057* Lemma for exmidac 7058. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}    &   𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}    &   𝐶 = {𝐴, 𝐵}       (CHOICEEXMID)
 
Theoremexmidac 7058 The axiom of choice implies excluded middle. See acexmid 5766 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
(CHOICEEXMID)
 
2.6.40  Cardinal number arithmetic
 
Theoremendjudisj 7059 Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
 
Theoremdjuen 7060 Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdjuenun 7061 Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremdju1en 7062 Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
 
Theoremdju0en 7063 Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)
 
Theoremxp2dju 7064 Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(2o × 𝐴) = (𝐴𝐴)
 
Theoremdjucomen 7065 Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
Theoremdjuassen 7066 Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵𝐶)))
 
Theoremxpdjuen 7067 Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 × (𝐵𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)))
 
Theoremdjudoml 7068 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
 
Theoremdjudomr 7069 A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.)
((𝐴𝑉𝐵𝑊) → 𝐵 ≼ (𝐴𝐵))
 
PART 3  CHOICE PRINCIPLES

We have already introduced the full Axiom of Choice df-ac 7055 but since it implies excluded middle as shown at exmidac 7058, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle.

 
3.1  Countable Choice and Dependent Choice
 
3.1.1  Introduce Countable Choice
 
Syntaxwacc 7070 Formula for an abbreviation of countable choice.
wff CCHOICE
 
Definitiondf-cc 7071* The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7055 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥)))
 
Theoremccfunen 7072* Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.)
(𝜑CCHOICE)    &   (𝜑𝐴 ≈ ω)    &   (𝜑 → ∀𝑥𝐴𝑤 𝑤𝑥)       (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6363 and similar theorems ), going from there to positive integers (df-ni 7105) and then positive rational numbers (df-nqqs 7149) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle. With excluded middle, it is natural to define the cut as the lower set only (as Metamath Proof Explorer does), but we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7073 The set of positive integers, which is the set of natural numbers ω with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

class N
 
Syntaxcpli 7074 Positive integer addition.
class +N
 
Syntaxcmi 7075 Positive integer multiplication.
class ·N
 
Syntaxclti 7076 Positive integer ordering relation.
class <N
 
Syntaxcplpq 7077 Positive pre-fraction addition.
class +pQ
 
Syntaxcmpq 7078 Positive pre-fraction multiplication.
class ·pQ
 
Syntaxcltpq 7079 Positive pre-fraction ordering relation.
class <pQ
 
Syntaxceq 7080 Equivalence class used to construct positive fractions.
class ~Q
 
Syntaxcnq 7081 Set of positive fractions.
class Q
 
Syntaxc1q 7082 The positive fraction constant 1.
class 1Q
 
Syntaxcplq 7083 Positive fraction addition.
class +Q
 
Syntaxcmq 7084 Positive fraction multiplication.
class ·Q
 
Syntaxcrq 7085 Positive fraction reciprocal operation.
class *Q
 
Syntaxcltq 7086 Positive fraction ordering relation.
class <Q
 
Syntaxceq0 7087 Equivalence class used to construct nonnegative fractions.
class ~Q0
 
Syntaxcnq0 7088 Set of nonnegative fractions.
class Q0
 
Syntaxc0q0 7089 The nonnegative fraction constant 0.
class 0Q0
 
Syntaxcplq0 7090 Nonnegative fraction addition.
class +Q0
 
Syntaxcmq0 7091 Nonnegative fraction multiplication.
class ·Q0
 
Syntaxcnp 7092 Set of positive reals.
class P
 
Syntaxc1p 7093 Positive real constant 1.
class 1P
 
Syntaxcpp 7094 Positive real addition.
class +P
 
Syntaxcmp 7095 Positive real multiplication.
class ·P
 
Syntaxcltp 7096 Positive real ordering relation.
class <P
 
Syntaxcer 7097 Equivalence class used to construct signed reals.
class ~R
 
Syntaxcnr 7098 Set of signed reals.
class R
 
Syntaxc0r 7099 The signed real constant 0.
class 0R
 
Syntaxc1r 7100 The signed real constant 1.
class 1R
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >