HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremordiso 7001* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
 
2.6.36  Disjoint union
 
2.6.36.1  Disjoint union
 
Syntaxcdju 7002 Extend class notation to include disjoint union of two classes.
class (𝐴𝐵)
 
Definitiondf-dju 7003 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.)
(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
 
Theoremdjueq12 7004 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdjueq1 7005 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremdjueq2 7006 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremnfdju 7007 Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremdjuex 7008 The disjoint union of sets is a set. See also the more precise djuss 7035. (Contributed by AV, 28-Jun-2022.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
 
Theoremdjuexb 7009 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
 
2.6.36.2  Left and right injections of a disjoint union

In this section, we define the left and right injections of a disjoint union and prove their main properties. These injections are restrictions of the "template" functions inl and inr, which appear in most applications in the form (inl ↾ 𝐴) and (inr ↾ 𝐵).

 
Syntaxcinl 7010 Extend class notation to include left injection of a disjoint union.
class inl
 
Syntaxcinr 7011 Extend class notation to include right injection of a disjoint union.
class inr
 
Definitiondf-inl 7012 Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
 
Definitiondf-inr 7013 Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
 
Theoremdjulclr 7014 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjurclr 7015 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐶𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjulcl 7016 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjurcl 7017 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐶𝐵 → (inr‘𝐶) ∈ (𝐴𝐵))
 
Theoremdjuf1olem 7018* Lemma for djulf1o 7023 and djurf1o 7024. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)       𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
 
Theoremdjuf1olemr 7019* Lemma for djulf1or 7021 and djurf1or 7022. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7018. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)       (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
 
Theoremdjulclb 7020 Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝐶𝑉 → (𝐶𝐴 ↔ (inl‘𝐶) ∈ (𝐴𝐵)))
 
Theoremdjulf1or 7021 The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
 
Theoremdjurf1or 7022 The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inr ↾ 𝐴):𝐴1-1-onto→({1o} × 𝐴)
 
Theoremdjulf1o 7023 The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inl:V–1-1-onto→({∅} × V)
 
Theoremdjurf1o 7024 The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inr:V–1-1-onto→({1o} × V)
 
Theoreminresflem 7025* Lemma for inlresf1 7026 and inrresf1 7027. (Contributed by BJ, 4-Jul-2022.)
𝐹:𝐴1-1-onto→({𝑋} × 𝐴)    &   (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)       𝐹:𝐴1-1𝐵
 
Theoreminlresf1 7026 The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
 
Theoreminrresf1 7027 The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
 
Theoremdjuinr 7028 The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7058 and djufun 7069) while the simpler statement (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7050). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
(ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
 
Theoremdjuin 7029 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
 
Theoreminl11 7030 Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
((𝐴𝑉𝐵𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremdjuunr 7031 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
(ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
 
Theoremdjuun 7032 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
 
Theoremeldju 7033* Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
 
Theoremdjur 7034* A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
(𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
 
2.6.36.3  Universal property of the disjoint union
 
Theoremdjuss 7035 A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
(𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
 
Theoremeldju1st 7036 The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
(𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
 
Theoremeldju2ndl 7037 The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
 
Theoremeldju2ndr 7038 The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) ≠ ∅) → (2nd𝑋) ∈ 𝐵)
 
Theorem1stinl 7039 The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
 
Theorem2ndinl 7040 The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋)
 
Theorem1stinr 7041 The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (1st ‘(inr‘𝑋)) = 1o)
 
Theorem2ndinr 7042 The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
 
Theoremdjune 7043 Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
((𝐴𝑉𝐵𝑊) → (inl‘𝐴) ≠ (inr‘𝐵))
 
Theoremupdjudhf 7044* The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑𝐻:(𝐴𝐵)⟶𝐶)
 
Theoremupdjudhcoinlf 7045* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
 
Theoremupdjudhcoinrg 7046* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))       (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
 
Theoremupdjud 7047* Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
(𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
 
Syntaxcdjucase 7048 Syntax for the "case" construction.
class case(𝑅, 𝑆)
 
Definitiondf-case 7049 The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7047. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
 
Theoremcasefun 7050 The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun case(𝐹, 𝐺))
 
Theoremcasedm 7051 The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
Theoremcaserel 7052 The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
 
Theoremcasef 7053 The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴𝑋)    &   (𝜑𝐺:𝐵𝑋)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
 
Theoremcaseinj 7054 The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun case(𝑅, 𝑆))
 
Theoremcasef1 7055 The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.)
(𝜑𝐹:𝐴1-1𝑋)    &   (𝜑𝐺:𝐵1-1𝑋)    &   (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅)       (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)–1-1𝑋)
 
Theoremcaseinl 7056 Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
(𝜑𝐹 Fn 𝐵)    &   (𝜑 → Fun 𝐺)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))
 
Theoremcaseinr 7057 Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
(𝜑 → Fun 𝐹)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴𝐵)       (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
 
2.6.36.4  Dominance and equinumerosity properties of disjoint union
 
Theoremdjudom 7058 Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≼ (𝐵𝐷))
 
Theoremomp1eomlem 7059* Lemma for omp1eom 7060. (Contributed by Jim Kingdon, 11-Jul-2023.)
𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘ 𝑥)))    &   𝑆 = (𝑥 ∈ ω ↦ suc 𝑥)    &   𝐺 = case(𝑆, ( I ↾ 1o))       𝐹:ω–1-1-onto→(ω ⊔ 1o)
 
Theoremomp1eom 7060 Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.)
(ω ⊔ 1o) ≈ ω
 
Theoremendjusym 7061 Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
 
Theoremeninl 7062 Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
 
Theoremeninr 7063 Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.)
(𝐴𝑉 → (inr “ 𝐴) ≈ 𝐴)
 
Theoremdifinfsnlem 7064* Lemma for difinfsn 7065. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐵𝐴)    &   (𝜑𝐹:(ω ⊔ 1o)–1-1𝐴)    &   (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵)    &   𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛))))       (𝜑𝐺:ω–1-1→(𝐴 ∖ {𝐵}))
 
Theoremdifinfsn 7065* An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴 ∖ {𝐵}))
 
Theoremdifinfinf 7066* An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
(((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵𝐴𝐵 ∈ Fin)) → ω ≼ (𝐴𝐵))
 
2.6.36.5  Older definition temporarily kept for comparison, to be deleted
 
Syntaxcdjud 7067 Syntax for the domain-disjoint-union of two relations.
class (𝑅d 𝑆)
 
Definitiondf-djud 7068 The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and 𝑆 ⊆ (𝐵 × 𝑋) are two binary relations, then (𝑅d 𝑆) is the binary relation from (𝐴𝐵) to 𝑋 having the universal property of disjoint unions (see updjud 7047 in the case of functions).

Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7049, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

(𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
 
Theoremdjufun 7069 The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝐹)    &   (𝜑 → Fun 𝐺)       (𝜑 → Fun (𝐹d 𝐺))
 
Theoremdjudm 7070 The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
 
Theoremdjuinj 7071 The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
(𝜑 → Fun 𝑅)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)       (𝜑 → Fun (𝑅d 𝑆))
 
2.6.36.6  Countable sets
 
Theorem0ct 7072 The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.)
𝑓 𝑓:ω–onto→(∅ ⊔ 1o)
 
Theoremctmlemr 7073* Lemma for ctm 7074. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
 
Theoremctm 7074* Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto𝐴))
 
Theoremctssdclemn0 7075* Lemma for ctssdc 7078. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   (𝜑 → ¬ ∅ ∈ 𝑆)       (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremctssdccl 7076* A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7078 but expressed in terms of classes rather than . (Contributed by Jim Kingdon, 30-Oct-2023.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   𝑆 = {𝑥 ∈ ω ∣ (𝐹𝑥) ∈ (inl “ 𝐴)}    &   𝐺 = (inl ∘ 𝐹)       (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑆))
 
Theoremctssdclemr 7077* Lemma for ctssdc 7078. Showing that our usual definition of countable implies the alternate one. (Contributed by Jim Kingdon, 16-Aug-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠))
 
Theoremctssdc 7078* A set is countable iff there is a surjection from a decidable subset of the natural numbers onto it. The decidability condition is needed as shown at ctssexmid 7114. (Contributed by Jim Kingdon, 15-Aug-2023.)
(∃𝑠(𝑠 ⊆ ω ∧ ∃𝑓 𝑓:𝑠onto𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛𝑠) ↔ ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremenumctlemm 7079* Lemma for enumct 7080. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
(𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∅ ∈ 𝑁)    &   𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))       (𝜑𝐺:ω–onto𝐴)
 
Theoremenumct 7080* A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as 𝑔𝑔:ω–onto→(𝐴 ⊔ 1o) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
(∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremfinct 7081* A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
(𝐴 ∈ Fin → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
 
Theoremomct 7082 ω is countable. (Contributed by Jim Kingdon, 23-Dec-2023.)
𝑓 𝑓:ω–onto→(ω ⊔ 1o)
 
Theoremctfoex 7083* A countable class is a set. (Contributed by Jim Kingdon, 25-Dec-2023.)
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → 𝐴 ∈ V)
 
2.6.37  The one-point compactification of the natural numbers

This section introduces the one-point compactification of the set of natural numbers, introduced by Escardo as the set of nonincreasing sequences on ω with values in 2o. The topological results justifying its name will be proved later.

 
Syntaxxnninf 7084 Set of nonincreasing sequences in 2o𝑚 ω.
class
 
Definitiondf-nninf 7085* Define the set of nonincreasing sequences in 2o𝑚 ω. Definition in Section 3.1 of [Pierik], p. 15. If we assumed excluded middle, this would be essentially the same as 0* as defined at df-xnn0 9178 but in its absence the relationship between the two is more complicated. This definition would function much the same whether we used ω or 0, but the former allows us to take advantage of 2o = {∅, 1o} (df2o3 6398) so we adopt it. (Contributed by Jim Kingdon, 14-Jul-2022.)
= {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
 
Theoremnninfex 7086 is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
∈ V
 
Theoremnninff 7087 An element of is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝐴 ∈ ℕ𝐴:ω⟶2o)
 
Theoreminfnninf 7088 The point at infinity in is the constant sequence equal to 1o. Note that with our encoding of functions, that constant function can also be expressed as (ω × {1o}), as fconstmpt 4651 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
(𝑖 ∈ ω ↦ 1o) ∈ ℕ
 
TheoreminfnninfOLD 7089 Obsolete version of infnninf 7088 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(ω × {1o}) ∈ ℕ
 
Theoremnnnninf 7090* Elements of corresponding to natural numbers. The natural number 𝑁 corresponds to a sequence of 𝑁 ones followed by zeroes. This can be strengthened to include infinity, see nnnninf2 7091. (Contributed by Jim Kingdon, 14-Jul-2022.)
(𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
Theoremnnnninf2 7091* Canonical embedding of suc ω into . (Contributed by BJ, 10-Aug-2024.)
(𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
 
Theoremnnnninfeq 7092* Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
Theoremnnnninfeq2 7093* Mapping of a natural number to an element of . Similar to nnnninfeq 7092 but if we have information about a single 1o digit, that gives information about all previous digits. (Contributed by Jim Kingdon, 4-Aug-2022.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → (𝑃 𝑁) = 1o)    &   (𝜑 → (𝑃𝑁) = ∅)       (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
 
Theoremnninfisollem0 7094* Lemma for nninfisol 7097. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 = ∅)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisollemne 7095* Lemma for nninfisol 7097. A case where 𝑁 is a successor and 𝑁 and 𝑋 are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 ≠ ∅)    &   (𝜑 → (𝑋 𝑁) = ∅)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisollemeq 7096* Lemma for nninfisol 7097. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
(𝜑𝑋 ∈ ℕ)    &   (𝜑 → (𝑋𝑁) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑁 ≠ ∅)    &   (𝜑 → (𝑋 𝑁) = 1o)       (𝜑DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
Theoremnninfisol 7097* Finite elements of are isolated. That is, given a natural number and any element of , it is decidable whether the natural number (when converted to an element of ) is equal to the given element of . Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)
((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
 
2.6.38  Omniscient sets
 
Syntaxcomni 7098 Extend class definition to include the class of omniscient sets.
class Omni
 
Definitiondf-omni 7099* An omniscient set is one where we can decide whether a predicate (here represented by a function 𝑓) holds (is equal to 1o) for all elements or fails to hold (is equal to ) for some element. Definition 3.1 of [Pierik], p. 14.

In particular, ω ∈ Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.)

Omni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥𝑦 (𝑓𝑥) = ∅ ∨ ∀𝑥𝑦 (𝑓𝑥) = 1o))}
 
Theoremisomni 7100* The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
(𝐴𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓(𝑓:𝐴⟶2o → (∃𝑥𝐴 (𝑓𝑥) = ∅ ∨ ∀𝑥𝐴 (𝑓𝑥) = 1o))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >