HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 153)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
2.6.34  Supremum and infimum
 
Syntaxcsup 7001 Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐡. For example, 𝑅 could be 'less than' and 𝐡 could be the set of real numbers.
class sup(𝐴, 𝐡, 𝑅)
 
Syntaxcinf 7002 Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐡. For example, 𝑅 could be 'less than' and 𝐡 could be the set of real numbers.
class inf(𝐴, 𝐡, 𝑅)
 
Definitiondf-sup 7003* Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐡 and when the supremum exists. (Contributed by NM, 22-May-1999.)
sup(𝐴, 𝐡, 𝑅) = βˆͺ {π‘₯ ∈ 𝐡 ∣ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐡 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦𝑅𝑧))}
 
Definitiondf-inf 7004 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐡 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐡 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, ◑𝑅)
 
Theoremsupeq1 7005 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
(𝐡 = 𝐢 β†’ sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅))
 
Theoremsupeq1d 7006 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
(πœ‘ β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅))
 
Theoremsupeq1i 7007 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐡 = 𝐢    β‡’   sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅)
 
Theoremsupeq2 7008 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐡 = 𝐢 β†’ sup(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐢, 𝑅))
 
Theoremsupeq3 7009 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 β†’ sup(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, 𝑆))
 
Theoremsupeq123d 7010 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
(πœ‘ β†’ 𝐴 = 𝐷)    &   (πœ‘ β†’ 𝐡 = 𝐸)    &   (πœ‘ β†’ 𝐢 = 𝐹)    β‡’   (πœ‘ β†’ sup(𝐴, 𝐡, 𝐢) = sup(𝐷, 𝐸, 𝐹))
 
Theoremnfsup 7011 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
β„²π‘₯𝐴    &   β„²π‘₯𝐡    &   β„²π‘₯𝑅    β‡’   β„²π‘₯sup(𝐴, 𝐡, 𝑅)
 
Theoremsupmoti 7012* Any class 𝐡 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 8057) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ βˆƒ*π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))
 
Theoremsupeuti 7013* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))
 
Theoremsupval2ti 7014* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = (β„©π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧))))
 
Theoremeqsupti 7015* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ βˆ€π‘¦ ∈ 𝐡 Β¬ 𝐢𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅𝐢 β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)) β†’ sup(𝐡, 𝐴, 𝑅) = 𝐢))
 
Theoremeqsuptid 7016* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ Β¬ 𝐢𝑅𝑦)    &   ((πœ‘ ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐢)) β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = 𝐢)
 
Theoremsupclti 7017* A supremum belongs to its base class (closure law). See also supubti 7018 and suplubti 7019. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupubti 7018* A supremum is an upper bound. See also supclti 7017 and suplubti 7019.

This proof demonstrates how to expand an iota-based definition (df-iota 5193) using riotacl2 5861.

(Contributed by Jim Kingdon, 24-Nov-2021.)

((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ (𝐢 ∈ 𝐡 β†’ Β¬ sup(𝐡, 𝐴, 𝑅)𝑅𝐢))
 
Theoremsuplubti 7019* A supremum is the least upper bound. See also supclti 7017 and supubti 7018. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ 𝐢𝑅sup(𝐡, 𝐴, 𝑅)) β†’ βˆƒπ‘§ ∈ 𝐡 𝐢𝑅𝑧))
 
Theoremsuplub2ti 7020* Bidirectional form of suplubti 7019. (Contributed by Jim Kingdon, 17-Jan-2022.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    &   (πœ‘ β†’ 𝑅 Or 𝐴)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐴)    β‡’   ((πœ‘ ∧ 𝐢 ∈ 𝐴) β†’ (𝐢𝑅sup(𝐡, 𝐴, 𝑅) ↔ βˆƒπ‘§ ∈ 𝐡 𝐢𝑅𝑧))
 
Theoremsupelti 7021* Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐢 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) ∈ 𝐢)
 
Theoremsup00 7022 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
sup(𝐡, βˆ…, 𝑅) = βˆ…
 
Theoremsupmaxti 7023* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ 𝐡)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ Β¬ 𝐢𝑅𝑦)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = 𝐢)
 
Theoremsupsnti 7024* The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    β‡’   (πœ‘ β†’ sup({𝐡}, 𝐴, 𝑅) = 𝐡)
 
Theoremisotilem 7025* Lemma for isoti 7026. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ = 𝑦 ↔ (Β¬ π‘₯𝑆𝑦 ∧ Β¬ 𝑦𝑆π‘₯)) β†’ βˆ€π‘’ ∈ 𝐴 βˆ€π‘£ ∈ 𝐴 (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒))))
 
Theoremisoti 7026* An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡) β†’ (βˆ€π‘’ ∈ 𝐴 βˆ€π‘£ ∈ 𝐴 (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)) ↔ βˆ€π‘’ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑆𝑣 ∧ Β¬ 𝑣𝑆𝑒))))
 
Theoremsupisolem 7027* Lemma for supisoti 7029. (Contributed by Mario Carneiro, 24-Dec-2016.)
(πœ‘ β†’ 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡))    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    β‡’   ((πœ‘ ∧ 𝐷 ∈ 𝐴) β†’ ((βˆ€π‘¦ ∈ 𝐢 Β¬ 𝐷𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅𝐷 β†’ βˆƒπ‘§ ∈ 𝐢 𝑦𝑅𝑧)) ↔ (βˆ€π‘€ ∈ (𝐹 β€œ 𝐢) Β¬ (πΉβ€˜π·)𝑆𝑀 ∧ βˆ€π‘€ ∈ 𝐡 (𝑀𝑆(πΉβ€˜π·) β†’ βˆƒπ‘£ ∈ (𝐹 β€œ 𝐢)𝑀𝑆𝑣))))
 
Theoremsupisoex 7028* Lemma for supisoti 7029. (Contributed by Mario Carneiro, 24-Dec-2016.)
(πœ‘ β†’ 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡))    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐢 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐢 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ 𝐡 (βˆ€π‘€ ∈ (𝐹 β€œ 𝐢) Β¬ 𝑒𝑆𝑀 ∧ βˆ€π‘€ ∈ 𝐡 (𝑀𝑆𝑒 β†’ βˆƒπ‘£ ∈ (𝐹 β€œ 𝐢)𝑀𝑆𝑣)))
 
Theoremsupisoti 7029* Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
(πœ‘ β†’ 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡))    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐢 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐢 𝑦𝑅𝑧)))    &   ((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ sup((𝐹 β€œ 𝐢), 𝐡, 𝑆) = (πΉβ€˜sup(𝐢, 𝐴, 𝑅)))
 
Theoreminfeq1 7030 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐡 = 𝐢 β†’ inf(𝐡, 𝐴, 𝑅) = inf(𝐢, 𝐴, 𝑅))
 
Theoreminfeq1d 7031 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(πœ‘ β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ inf(𝐡, 𝐴, 𝑅) = inf(𝐢, 𝐴, 𝑅))
 
Theoreminfeq1i 7032 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
𝐡 = 𝐢    β‡’   inf(𝐡, 𝐴, 𝑅) = inf(𝐢, 𝐴, 𝑅)
 
Theoreminfeq2 7033 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐡 = 𝐢 β†’ inf(𝐴, 𝐡, 𝑅) = inf(𝐴, 𝐢, 𝑅))
 
Theoreminfeq3 7034 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝑅 = 𝑆 β†’ inf(𝐴, 𝐡, 𝑅) = inf(𝐴, 𝐡, 𝑆))
 
Theoreminfeq123d 7035 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(πœ‘ β†’ 𝐴 = 𝐷)    &   (πœ‘ β†’ 𝐡 = 𝐸)    &   (πœ‘ β†’ 𝐢 = 𝐹)    β‡’   (πœ‘ β†’ inf(𝐴, 𝐡, 𝐢) = inf(𝐷, 𝐸, 𝐹))
 
Theoremnfinf 7036 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
β„²π‘₯𝐴    &   β„²π‘₯𝐡    &   β„²π‘₯𝑅    β‡’   β„²π‘₯inf(𝐴, 𝐡, 𝑅)
 
Theoremcnvinfex 7037* Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
(πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯◑𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦◑𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦◑𝑅𝑧)))
 
Theoremcnvti 7038* If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   ((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒◑𝑅𝑣 ∧ Β¬ 𝑣◑𝑅𝑒)))
 
Theoremeqinfti 7039* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅𝐢 ∧ βˆ€π‘¦ ∈ 𝐴 (𝐢𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)) β†’ inf(𝐡, 𝐴, 𝑅) = 𝐢))
 
Theoremeqinftid 7040* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ Β¬ 𝑦𝑅𝐢)    &   ((πœ‘ ∧ (𝑦 ∈ 𝐴 ∧ 𝐢𝑅𝑦)) β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)    β‡’   (πœ‘ β†’ inf(𝐡, 𝐴, 𝑅) = 𝐢)
 
Theoreminfvalti 7041* Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ inf(𝐡, 𝐴, 𝑅) = (β„©π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦))))
 
Theoreminfclti 7042* An infimum belongs to its base class (closure law). See also inflbti 7043 and infglbti 7044. (Contributed by Jim Kingdon, 17-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ inf(𝐡, 𝐴, 𝑅) ∈ 𝐴)
 
Theoreminflbti 7043* An infimum is a lower bound. See also infclti 7042 and infglbti 7044. (Contributed by Jim Kingdon, 18-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ (𝐢 ∈ 𝐡 β†’ Β¬ 𝐢𝑅inf(𝐡, 𝐴, 𝑅)))
 
Theoreminfglbti 7044* An infimum is the greatest lower bound. See also infclti 7042 and inflbti 7043. (Contributed by Jim Kingdon, 18-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ inf(𝐡, 𝐴, 𝑅)𝑅𝐢) β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝐢))
 
Theoreminfnlbti 7045* A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ βˆ€π‘§ ∈ 𝐡 Β¬ 𝑧𝑅𝐢) β†’ Β¬ inf(𝐡, 𝐴, 𝑅)𝑅𝐢))
 
Theoreminfminti 7046* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ 𝐡)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ Β¬ 𝑦𝑅𝐢)    β‡’   (πœ‘ β†’ inf(𝐡, 𝐴, 𝑅) = 𝐢)
 
Theoreminfmoti 7047* Any class 𝐡 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ βˆƒ*π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))
 
Theoreminfeuti 7048* An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐡 𝑧𝑅𝑦)))
 
Theoreminfsnti 7049* The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    β‡’   (πœ‘ β†’ inf({𝐡}, 𝐴, 𝑅) = 𝐡)
 
Theoreminf00 7050 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
inf(𝐡, βˆ…, 𝑅) = βˆ…
 
Theoreminfisoti 7051* Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
(πœ‘ β†’ 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐡))    &   (πœ‘ β†’ 𝐢 βŠ† 𝐴)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐢 Β¬ 𝑦𝑅π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 β†’ βˆƒπ‘§ ∈ 𝐢 𝑧𝑅𝑦)))    &   ((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ inf((𝐹 β€œ 𝐢), 𝐡, 𝑆) = (πΉβ€˜inf(𝐢, 𝐴, 𝑅)))
 
Theoremsupex2g 7052 Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 ∈ 𝐢 β†’ sup(𝐡, 𝐴, 𝑅) ∈ V)
 
Theoreminfex2g 7053 Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
(𝐴 ∈ 𝐢 β†’ inf(𝐡, 𝐴, 𝑅) ∈ V)
 
2.6.35  Ordinal isomorphism
 
Theoremordiso2 7054 Generalize ordiso 7055 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐹 Isom E , E (𝐴, 𝐡) ∧ Ord 𝐴 ∧ Ord 𝐡) β†’ 𝐴 = 𝐡)
 
Theoremordiso 7055* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 = 𝐡 ↔ βˆƒπ‘“ 𝑓 Isom E , E (𝐴, 𝐡)))
 
2.6.36  Disjoint union
 
2.6.36.1  Disjoint union
 
Syntaxcdju 7056 Extend class notation to include disjoint union of two classes.
class (𝐴 βŠ” 𝐡)
 
Definitiondf-dju 7057 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐡, tagging each one with whether it came from 𝐴 or 𝐡. (Contributed by Jim Kingdon, 20-Jun-2022.)
(𝐴 βŠ” 𝐡) = (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡))
 
Theoremdjueq12 7058 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
((𝐴 = 𝐡 ∧ 𝐢 = 𝐷) β†’ (𝐴 βŠ” 𝐢) = (𝐡 βŠ” 𝐷))
 
Theoremdjueq1 7059 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐡 β†’ (𝐴 βŠ” 𝐢) = (𝐡 βŠ” 𝐢))
 
Theoremdjueq2 7060 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
(𝐴 = 𝐡 β†’ (𝐢 βŠ” 𝐴) = (𝐢 βŠ” 𝐡))
 
Theoremnfdju 7061 Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
β„²π‘₯𝐴    &   β„²π‘₯𝐡    β‡’   β„²π‘₯(𝐴 βŠ” 𝐡)
 
Theoremdjuex 7062 The disjoint union of sets is a set. See also the more precise djuss 7089. (Contributed by AV, 28-Jun-2022.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 βŠ” 𝐡) ∈ V)
 
Theoremdjuexb 7063 The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
((𝐴 ∈ V ∧ 𝐡 ∈ V) ↔ (𝐴 βŠ” 𝐡) ∈ V)
 
2.6.36.2  Left and right injections of a disjoint union

In this section, we define the left and right injections of a disjoint union and prove their main properties. These injections are restrictions of the "template" functions inl and inr, which appear in most applications in the form (inl β†Ύ 𝐴) and (inr β†Ύ 𝐡).

 
Syntaxcinl 7064 Extend class notation to include left injection of a disjoint union.
class inl
 
Syntaxcinr 7065 Extend class notation to include right injection of a disjoint union.
class inr
 
Definitiondf-inl 7066 Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
 
Definitiondf-inr 7067 Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
 
Theoremdjulclr 7068 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐢 ∈ 𝐴 β†’ ((inl β†Ύ 𝐴)β€˜πΆ) ∈ (𝐴 βŠ” 𝐡))
 
Theoremdjurclr 7069 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.)
(𝐢 ∈ 𝐡 β†’ ((inr β†Ύ 𝐡)β€˜πΆ) ∈ (𝐴 βŠ” 𝐡))
 
Theoremdjulcl 7070 Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐢 ∈ 𝐴 β†’ (inlβ€˜πΆ) ∈ (𝐴 βŠ” 𝐡))
 
Theoremdjurcl 7071 Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
(𝐢 ∈ 𝐡 β†’ (inrβ€˜πΆ) ∈ (𝐴 βŠ” 𝐡))
 
Theoremdjuf1olem 7072* Lemma for djulf1o 7077 and djurf1o 7078. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   πΉ = (π‘₯ ∈ 𝐴 ↦ βŸ¨π‘‹, π‘₯⟩)    β‡’   πΉ:𝐴–1-1-ontoβ†’({𝑋} Γ— 𝐴)
 
Theoremdjuf1olemr 7073* Lemma for djulf1or 7075 and djurf1or 7076. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7072. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
𝑋 ∈ V    &   πΉ = (π‘₯ ∈ V ↦ βŸ¨π‘‹, π‘₯⟩)    β‡’   (𝐹 β†Ύ 𝐴):𝐴–1-1-ontoβ†’({𝑋} Γ— 𝐴)
 
Theoremdjulclb 7074 Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.)
(𝐢 ∈ 𝑉 β†’ (𝐢 ∈ 𝐴 ↔ (inlβ€˜πΆ) ∈ (𝐴 βŠ” 𝐡)))
 
Theoremdjulf1or 7075 The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inl β†Ύ 𝐴):𝐴–1-1-ontoβ†’({βˆ…} Γ— 𝐴)
 
Theoremdjurf1or 7076 The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
(inr β†Ύ 𝐴):𝐴–1-1-ontoβ†’({1o} Γ— 𝐴)
 
Theoremdjulf1o 7077 The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inl:V–1-1-ontoβ†’({βˆ…} Γ— V)
 
Theoremdjurf1o 7078 The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
inr:V–1-1-ontoβ†’({1o} Γ— V)
 
Theoreminresflem 7079* Lemma for inlresf1 7080 and inrresf1 7081. (Contributed by BJ, 4-Jul-2022.)
𝐹:𝐴–1-1-ontoβ†’({𝑋} Γ— 𝐴)    &   (π‘₯ ∈ 𝐴 β†’ (πΉβ€˜π‘₯) ∈ 𝐡)    β‡’   πΉ:𝐴–1-1→𝐡
 
Theoreminlresf1 7080 The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inl β†Ύ 𝐴):𝐴–1-1β†’(𝐴 βŠ” 𝐡)
 
Theoreminrresf1 7081 The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.)
(inr β†Ύ 𝐡):𝐡–1-1β†’(𝐴 βŠ” 𝐡)
 
Theoremdjuinr 7082 The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7112 and djufun 7123) while the simpler statement (ran inl ∩ ran inr) = βˆ… is easily recovered from it by substituting V for both 𝐴 and 𝐡 as done in casefun 7104). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
(ran (inl β†Ύ 𝐴) ∩ ran (inr β†Ύ 𝐡)) = βˆ…
 
Theoremdjuin 7083 The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl β€œ 𝐴) ∩ (inr β€œ 𝐡)) = βˆ…
 
Theoreminl11 7084 Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((inlβ€˜π΄) = (inlβ€˜π΅) ↔ 𝐴 = 𝐡))
 
Theoremdjuunr 7085 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.)
(ran (inl β†Ύ 𝐴) βˆͺ ran (inr β†Ύ 𝐡)) = (𝐴 βŠ” 𝐡)
 
Theoremdjuun 7086 The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
((inl β€œ 𝐴) βˆͺ (inr β€œ 𝐡)) = (𝐴 βŠ” 𝐡)
 
Theoremeldju 7087* Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
(𝐢 ∈ (𝐴 βŠ” 𝐡) ↔ (βˆƒπ‘₯ ∈ 𝐴 𝐢 = ((inl β†Ύ 𝐴)β€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 𝐡 𝐢 = ((inr β†Ύ 𝐡)β€˜π‘₯)))
 
Theoremdjur 7088* A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
(𝐢 ∈ (𝐴 βŠ” 𝐡) ↔ (βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯)))
 
2.6.36.3  Universal property of the disjoint union
 
Theoremdjuss 7089 A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
(𝐴 βŠ” 𝐡) βŠ† ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡))
 
Theoremeldju1st 7090 The first component of an element of a disjoint union is either βˆ… or 1o. (Contributed by AV, 26-Jun-2022.)
(𝑋 ∈ (𝐴 βŠ” 𝐡) β†’ ((1st β€˜π‘‹) = βˆ… ∨ (1st β€˜π‘‹) = 1o))
 
Theoremeldju2ndl 7091 The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴 βŠ” 𝐡) ∧ (1st β€˜π‘‹) = βˆ…) β†’ (2nd β€˜π‘‹) ∈ 𝐴)
 
Theoremeldju2ndr 7092 The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
((𝑋 ∈ (𝐴 βŠ” 𝐡) ∧ (1st β€˜π‘‹) β‰  βˆ…) β†’ (2nd β€˜π‘‹) ∈ 𝐡)
 
Theorem1stinl 7093 The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
(𝑋 ∈ 𝑉 β†’ (1st β€˜(inlβ€˜π‘‹)) = βˆ…)
 
Theorem2ndinl 7094 The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋 ∈ 𝑉 β†’ (2nd β€˜(inlβ€˜π‘‹)) = 𝑋)
 
Theorem1stinr 7095 The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.)
(𝑋 ∈ 𝑉 β†’ (1st β€˜(inrβ€˜π‘‹)) = 1o)
 
Theorem2ndinr 7096 The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
(𝑋 ∈ 𝑉 β†’ (2nd β€˜(inrβ€˜π‘‹)) = 𝑋)
 
Theoremdjune 7097 Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (inlβ€˜π΄) β‰  (inrβ€˜π΅))
 
Theoremupdjudhf 7098* The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
(πœ‘ β†’ 𝐹:𝐴⟢𝐢)    &   (πœ‘ β†’ 𝐺:𝐡⟢𝐢)    &   π» = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))    β‡’   (πœ‘ β†’ 𝐻:(𝐴 βŠ” 𝐡)⟢𝐢)
 
Theoremupdjudhcoinlf 7099* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
(πœ‘ β†’ 𝐹:𝐴⟢𝐢)    &   (πœ‘ β†’ 𝐺:𝐡⟢𝐢)    &   π» = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))    β‡’   (πœ‘ β†’ (𝐻 ∘ (inl β†Ύ 𝐴)) = 𝐹)
 
Theoremupdjudhcoinrg 7100* The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
(πœ‘ β†’ 𝐹:𝐴⟢𝐢)    &   (πœ‘ β†’ 𝐺:𝐡⟢𝐢)    &   π» = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))    β‡’   (πœ‘ β†’ (𝐻 ∘ (inr β†Ύ 𝐡)) = 𝐺)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15237
  Copyright terms: Public domain < Previous  Next >