| Intuitionistic Logic Explorer Theorem List (p. 71 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fiintim 7001* |
If a class is closed under pairwise intersections, then it is closed
under nonempty finite intersections. The converse would appear to
require an additional condition, such as 𝑥 and 𝑦 not
being
equal, or 𝐴 having decidable equality.
This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
| Theorem | xpfi 7002 | The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | 3xpfi 7003 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
| ⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
| Theorem | fisseneq 7004 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | phpeqd 7005 | Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6935 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | ssfirab 7006* | A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) | ||
| Theorem | ssfidc 7007* | A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | opabfi 7008* | Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 DECID 𝜓) ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
| Theorem | infidc 7009* | The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| Theorem | snon0 7010 | An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) | ||
| Theorem | fnfi 7011 | A version of fnex 5787 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | fundmfi 7012 | The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin) | ||
| Theorem | fundmfibi 7013 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
| Theorem | resfnfinfinss 7014 | The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
| Theorem | residfi 7015 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
| Theorem | relcnvfi 7016 | If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | ||
| Theorem | funrnfi 7017 | The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
| ⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) | ||
| Theorem | f1ofi 7018 | If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | f1dmvrnfibi 7019 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7020. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | f1vrnfibi 7020 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 7019. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | iunfidisj 7021* | The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
| Theorem | f1finf1o 7022 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | en1eqsn 7023 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnbi 7024 | A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
| Theorem | snexxph 7025* | A case where the antecedent of snexg 4218 is not needed. The class {𝑥 ∣ 𝜑} is from dcextest 4618. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
| ⊢ {{𝑥 ∣ 𝜑}} ∈ V | ||
| Theorem | preimaf1ofi 7026 | The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
| Theorem | fidcenumlemim 7027* | Lemma for fidcenum 7031. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
| Theorem | fidcenumlemrks 7028* | Lemma for fidcenum 7031. Induction step for fidcenumlemrk 7029. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐽 ∈ ω) & ⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) & ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) | ||
| Theorem | fidcenumlemrk 7029* | Lemma for fidcenum 7031. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝐾 ⊆ 𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) | ||
| Theorem | fidcenumlemr 7030* | Lemma for fidcenum 7031. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
| Theorem | fidcenum 7031* | A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.) |
| ⊢ (𝐴 ∈ Fin ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
| Theorem | sbthlem1 7032* | Lemma for isbth 7042. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
| Theorem | sbthlem2 7033* | Lemma for isbth 7042. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
| Theorem | sbthlemi3 7034* | Lemma for isbth 7042. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
| Theorem | sbthlemi4 7035* | Lemma for isbth 7042. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
| Theorem | sbthlemi5 7036* | Lemma for isbth 7042. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → dom 𝐻 = 𝐴) | ||
| Theorem | sbthlemi6 7037* | Lemma for isbth 7042. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
| Theorem | sbthlem7 7038* | Lemma for isbth 7042. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun 𝑓 ∧ Fun ◡𝑔) → Fun 𝐻) | ||
| Theorem | sbthlemi8 7039* | Lemma for isbth 7042. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) | ||
| Theorem | sbthlemi9 7040* | Lemma for isbth 7042. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| Theorem | sbthlemi10 7041* | Lemma for isbth 7042. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
| Theorem | isbth 7042 | Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7032 through sbthlemi10 7041; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 7041. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 15754. (Contributed by NM, 8-Jun-1998.) |
| ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
| Syntax | cfi 7043 | Extend class notation with the function whose value is the class of finite intersections of the elements of a given set. |
| class fi | ||
| Definition | df-fi 7044* | Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7047). (Contributed by FL, 27-Apr-2008.) |
| ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) | ||
| Theorem | fival 7045* | The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) | ||
| Theorem | elfi 7046* | Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) | ||
| Theorem | elfi2 7047* | The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩ 𝑥)) | ||
| Theorem | elfir 7048 | Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) | ||
| Theorem | ssfii 7049 | Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | ||
| Theorem | fi0 7050 | The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (fi‘∅) = ∅ | ||
| Theorem | fieq0 7051 | A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) | ||
| Theorem | fiss 7052 | Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) | ||
| Theorem | fiuni 7053 | The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) | ||
| Theorem | fipwssg 7054 | If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) | ||
| Theorem | fifo 7055* | Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) | ||
| Theorem | dcfi 7056* | Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∀𝑥 ∈ 𝐴 𝜑) | ||
| Syntax | csup 7057 | Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
| class sup(𝐴, 𝐵, 𝑅) | ||
| Syntax | cinf 7058 | Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
| class inf(𝐴, 𝐵, 𝑅) | ||
| Definition | df-sup 7059* | Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. (Contributed by NM, 22-May-1999.) |
| ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | ||
| Definition | df-inf 7060 | Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.) |
| ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | ||
| Theorem | supeq1 7061 | Equality theorem for supremum. (Contributed by NM, 22-May-1999.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1d 7062 | Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1i 7063 | Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) | ||
| Theorem | supeq2 7064 | Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) | ||
| Theorem | supeq3 7065 | Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆)) | ||
| Theorem | supeq123d 7066 | Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfsup 7067 | Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | ||
| Theorem | supmoti 7068* | Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 8123) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supeuti 7069* | A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supval2ti 7070* | Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | ||
| Theorem | eqsupti 7071* | Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqsuptid 7072* | Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | supclti 7073* | A supremum belongs to its base class (closure law). See also supubti 7074 and suplubti 7075. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supubti 7074* |
A supremum is an upper bound. See also supclti 7073 and suplubti 7075.
This proof demonstrates how to expand an iota-based definition (df-iota 5220) using riotacl2 5894. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | suplubti 7075* | A supremum is the least upper bound. See also supclti 7073 and supubti 7074. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | suplub2ti 7076* | Bidirectional form of suplubti 7075. (Contributed by Jim Kingdon, 17-Jan-2022.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | supelti 7077* | Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐶 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶) | ||
| Theorem | sup00 7078 | The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ sup(𝐵, ∅, 𝑅) = ∅ | ||
| Theorem | supmaxti 7079* | The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | supsnti 7080* | The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
| Theorem | isotilem 7081* | Lemma for isoti 7082. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))) | ||
| Theorem | isoti 7082* | An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))) | ||
| Theorem | supisolem 7083* | Lemma for supisoti 7085. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) | ||
| Theorem | supisoex 7084* | Lemma for supisoti 7085. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) | ||
| Theorem | supisoti 7085* | Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) & ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅))) | ||
| Theorem | infeq1 7086 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1d 7087 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1i 7088 | Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) | ||
| Theorem | infeq2 7089 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) | ||
| Theorem | infeq3 7090 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) | ||
| Theorem | infeq123d 7091 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfinf 7092 | Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | ||
| Theorem | cnvinfex 7093* | Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
| Theorem | cnvti 7094* | If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) | ||
| Theorem | eqinfti 7095* | Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqinftid 7096* | Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | infvalti 7097* | Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) | ||
| Theorem | infclti 7098* | An infimum belongs to its base class (closure law). See also inflbti 7099 and infglbti 7100. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | inflbti 7099* | An infimum is a lower bound. See also infclti 7098 and infglbti 7100. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) | ||
| Theorem | infglbti 7100* | An infimum is the greatest lower bound. See also infclti 7098 and inflbti 7099. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |