Home | Intuitionistic Logic Explorer Theorem List (p. 71 of 144) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | infeq1d 7001 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
Theorem | infeq1i 7002 | Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ 𝐵 = 𝐶 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) | ||
Theorem | infeq2 7003 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) | ||
Theorem | infeq3 7004 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) | ||
Theorem | infeq123d 7005 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) | ||
Theorem | nfinf 7006 | Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | ||
Theorem | cnvinfex 7007* | Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
Theorem | cnvti 7008* | If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) | ||
Theorem | eqinfti 7009* | Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
Theorem | eqinftid 7010* | Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | infvalti 7011* | Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) | ||
Theorem | infclti 7012* | An infimum belongs to its base class (closure law). See also inflbti 7013 and infglbti 7014. (Contributed by Jim Kingdon, 17-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
Theorem | inflbti 7013* | An infimum is a lower bound. See also infclti 7012 and infglbti 7014. (Contributed by Jim Kingdon, 18-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) | ||
Theorem | infglbti 7014* | An infimum is the greatest lower bound. See also infclti 7012 and inflbti 7013. (Contributed by Jim Kingdon, 18-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
Theorem | infnlbti 7015* | A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
Theorem | infminti 7016* | The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | infmoti 7017* | Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | infeuti 7018* | An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | infsnti 7019* | The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
Theorem | inf00 7020 | The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
⊢ inf(𝐵, ∅, 𝑅) = ∅ | ||
Theorem | infisoti 7021* | Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) | ||
Theorem | supex2g 7022 | Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) | ||
Theorem | infex2g 7023 | Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.) |
⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) | ||
Theorem | ordiso2 7024 | Generalize ordiso 7025 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ordiso 7025* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
Syntax | cdju 7026 | Extend class notation to include disjoint union of two classes. |
class (𝐴 ⊔ 𝐵) | ||
Definition | df-dju 7027 | Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | ||
Theorem | djueq12 7028 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) | ||
Theorem | djueq1 7029 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐴 = 𝐵 → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐶)) | ||
Theorem | djueq2 7030 | Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐴 = 𝐵 → (𝐶 ⊔ 𝐴) = (𝐶 ⊔ 𝐵)) | ||
Theorem | nfdju 7031 | Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) | ||
Theorem | djuex 7032 | The disjoint union of sets is a set. See also the more precise djuss 7059. (Contributed by AV, 28-Jun-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | ||
Theorem | djuexb 7033 | The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ⊔ 𝐵) ∈ V) | ||
In this section, we define the left and right injections of a disjoint union and prove their main properties. These injections are restrictions of the "template" functions inl and inr, which appear in most applications in the form (inl ↾ 𝐴) and (inr ↾ 𝐵). | ||
Syntax | cinl 7034 | Extend class notation to include left injection of a disjoint union. |
class inl | ||
Syntax | cinr 7035 | Extend class notation to include right injection of a disjoint union. |
class inr | ||
Definition | df-inl 7036 | Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | ||
Definition | df-inr 7037 | Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | ||
Theorem | djulclr 7038 | Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
⊢ (𝐶 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djurclr 7039 | Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) (Revised by BJ, 6-Jul-2022.) |
⊢ (𝐶 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djulcl 7040 | Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djurcl 7041 | Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
⊢ (𝐶 ∈ 𝐵 → (inr‘𝐶) ∈ (𝐴 ⊔ 𝐵)) | ||
Theorem | djuf1olem 7042* | Lemma for djulf1o 7047 and djurf1o 7048. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) ⇒ ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | ||
Theorem | djuf1olemr 7043* | Lemma for djulf1or 7045 and djurf1or 7046. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7042. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ⇒ ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) | ||
Theorem | djulclb 7044 | Left biconditional closure of disjoint union. (Contributed by Jim Kingdon, 2-Jul-2022.) |
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ 𝐴 ↔ (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵))) | ||
Theorem | djulf1or 7045 | The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.) |
⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | ||
Theorem | djurf1or 7046 | The right injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.) |
⊢ (inr ↾ 𝐴):𝐴–1-1-onto→({1o} × 𝐴) | ||
Theorem | djulf1o 7047 | The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
⊢ inl:V–1-1-onto→({∅} × V) | ||
Theorem | djurf1o 7048 | The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
⊢ inr:V–1-1-onto→({1o} × V) | ||
Theorem | inresflem 7049* | Lemma for inlresf1 7050 and inrresf1 7051. (Contributed by BJ, 4-Jul-2022.) |
⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) & ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) ⇒ ⊢ 𝐹:𝐴–1-1→𝐵 | ||
Theorem | inlresf1 7050 | The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
⊢ (inl ↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) | ||
Theorem | inrresf1 7051 | The right injection restricted to the right class of a disjoint union is an injective function from the right class into the disjoint union. (Contributed by AV, 28-Jun-2022.) |
⊢ (inr ↾ 𝐵):𝐵–1-1→(𝐴 ⊔ 𝐵) | ||
Theorem | djuinr 7052 | The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7082 and djufun 7093) while the simpler statement ⊢ (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7074). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ | ||
Theorem | djuin 7053 | The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.) |
⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ | ||
Theorem | inl11 7054 | Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((inl‘𝐴) = (inl‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | djuunr 7055 | The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 6-Jul-2022.) |
⊢ (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴 ⊔ 𝐵) | ||
Theorem | djuun 7056 | The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.) |
⊢ ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴 ⊔ 𝐵) | ||
Theorem | eldju 7057* | Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.) |
⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | ||
Theorem | djur 7058* | A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) | ||
Theorem | djuss 7059 | A disjoint union is a subset of a Cartesian product. (Contributed by AV, 25-Jun-2022.) |
⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | ||
Theorem | eldju1st 7060 | The first component of an element of a disjoint union is either ∅ or 1o. (Contributed by AV, 26-Jun-2022.) |
⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) = ∅ ∨ (1st ‘𝑋) = 1o)) | ||
Theorem | eldju2ndl 7061 | The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) = ∅) → (2nd ‘𝑋) ∈ 𝐴) | ||
Theorem | eldju2ndr 7062 | The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) | ||
Theorem | 1stinl 7063 | The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) | ||
Theorem | 2ndinl 7064 | The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) | ||
Theorem | 1stinr 7065 | The first component of the value of a right injection is 1o. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (1st ‘(inr‘𝑋)) = 1o) | ||
Theorem | 2ndinr 7066 | The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) | ||
Theorem | djune 7067 | Left and right injection never produce equal values. (Contributed by Jim Kingdon, 2-Jul-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (inl‘𝐴) ≠ (inr‘𝐵)) | ||
Theorem | updjudhf 7068* | The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) | ||
Theorem | updjudhcoinlf 7069* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹) | ||
Theorem | updjudhcoinrg 7070* | The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺) | ||
Theorem | updjud 7071* | Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) | ||
Syntax | cdjucase 7072 | Syntax for the "case" construction. |
class case(𝑅, 𝑆) | ||
Definition | df-case 7073 | The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7071. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) | ||
Theorem | casefun 7074 | The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) ⇒ ⊢ (𝜑 → Fun case(𝐹, 𝐺)) | ||
Theorem | casedm 7075 | The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) | ||
Theorem | caserel 7076 | The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.) |
⊢ case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) | ||
Theorem | casef 7077 | The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝑋) & ⊢ (𝜑 → 𝐺:𝐵⟶𝑋) ⇒ ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) | ||
Theorem | caseinj 7078 | The "case" construction of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → Fun ◡𝑅) & ⊢ (𝜑 → Fun ◡𝑆) & ⊢ (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅) ⇒ ⊢ (𝜑 → Fun ◡case(𝑅, 𝑆)) | ||
Theorem | casef1 7079 | The "case" construction of two injective functions with disjoint ranges is an injective function. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → 𝐹:𝐴–1-1→𝑋) & ⊢ (𝜑 → 𝐺:𝐵–1-1→𝑋) & ⊢ (𝜑 → (ran 𝐹 ∩ ran 𝐺) = ∅) ⇒ ⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)–1-1→𝑋) | ||
Theorem | caseinl 7080 | Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹‘𝐴)) | ||
Theorem | caseinr 7081 | Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺‘𝐴)) | ||
Theorem | djudom 7082 | Dominance law for disjoint union. (Contributed by Jim Kingdon, 25-Jul-2022.) |
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐷)) | ||
Theorem | omp1eomlem 7083* | Lemma for omp1eom 7084. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ 𝐹 = (𝑥 ∈ ω ↦ if(𝑥 = ∅, (inr‘𝑥), (inl‘∪ 𝑥))) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ suc 𝑥) & ⊢ 𝐺 = case(𝑆, ( I ↾ 1o)) ⇒ ⊢ 𝐹:ω–1-1-onto→(ω ⊔ 1o) | ||
Theorem | omp1eom 7084 | Adding one to ω. (Contributed by Jim Kingdon, 10-Jul-2023.) |
⊢ (ω ⊔ 1o) ≈ ω | ||
Theorem | endjusym 7085 | Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
Theorem | eninl 7086 | Equinumerosity of a set and its image under left injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (inl “ 𝐴) ≈ 𝐴) | ||
Theorem | eninr 7087 | Equinumerosity of a set and its image under right injection. (Contributed by Jim Kingdon, 30-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (inr “ 𝐴) ≈ 𝐴) | ||
Theorem | difinfsnlem 7088* | Lemma for difinfsn 7089. The case where we need to swap 𝐵 and (inr‘∅) in building the mapping 𝐺. (Contributed by Jim Kingdon, 9-Aug-2023.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(ω ⊔ 1o)–1-1→𝐴) & ⊢ (𝜑 → (𝐹‘(inr‘∅)) ≠ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ if((𝐹‘(inl‘𝑛)) = 𝐵, (𝐹‘(inr‘∅)), (𝐹‘(inl‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐺:ω–1-1→(𝐴 ∖ {𝐵})) | ||
Theorem | difinfsn 7089* | An infinite set minus one element is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴) → ω ≼ (𝐴 ∖ {𝐵})) | ||
Theorem | difinfinf 7090* | An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.) |
⊢ (((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ω ≼ 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin)) → ω ≼ (𝐴 ∖ 𝐵)) | ||
Syntax | cdjud 7091 | Syntax for the domain-disjoint-union of two relations. |
class (𝑅 ⊔d 𝑆) | ||
Definition | df-djud 7092 |
The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and
𝑆
⊆ (𝐵 × 𝑋) are two binary
relations, then (𝑅 ⊔d 𝑆) is the
binary relation from (𝐴 ⊔ 𝐵) to 𝑋 having the universal
property of disjoint unions (see updjud 7071 in the case of functions).
Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7073, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.) |
⊢ (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) | ||
Theorem | djufun 7093 | The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) ⇒ ⊢ (𝜑 → Fun (𝐹 ⊔d 𝐺)) | ||
Theorem | djudm 7094 | The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) | ||
Theorem | djuinj 7095 | The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.) |
⊢ (𝜑 → Fun ◡𝑅) & ⊢ (𝜑 → Fun ◡𝑆) & ⊢ (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅) ⇒ ⊢ (𝜑 → Fun ◡(𝑅 ⊔d 𝑆)) | ||
Theorem | 0ct 7096 | The empty set is countable. Remark of [BauerSwan], p. 14:3 which also has the definition of countable used here. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ ∃𝑓 𝑓:ω–onto→(∅ ⊔ 1o) | ||
Theorem | ctmlemr 7097* | Lemma for ctm 7098. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) | ||
Theorem | ctm 7098* | Two equivalent definitions of countable for an inhabited set. Remark of [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:ω–onto→𝐴)) | ||
Theorem | ctssdclemn0 7099* | Lemma for ctssdc 7102. The ¬ ∅ ∈ 𝑆 case. (Contributed by Jim Kingdon, 16-Aug-2023.) |
⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ (𝜑 → ¬ ∅ ∈ 𝑆) ⇒ ⊢ (𝜑 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) | ||
Theorem | ctssdccl 7100* | A mapping from a decidable subset of the natural numbers onto a countable set. This is similar to one direction of ctssdc 7102 but expressed in terms of classes rather than ∃. (Contributed by Jim Kingdon, 30-Oct-2023.) |
⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ 𝑆 = {𝑥 ∈ ω ∣ (𝐹‘𝑥) ∈ (inl “ 𝐴)} & ⊢ 𝐺 = (◡inl ∘ 𝐹) ⇒ ⊢ (𝜑 → (𝑆 ⊆ ω ∧ 𝐺:𝑆–onto→𝐴 ∧ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |