HomeHome Intuitionistic Logic Explorer
Theorem List (p. 71 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7001-7100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfidifsnid 7001 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3793 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremnnfi 7002 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
(𝐴 ∈ ω → 𝐴 ∈ Fin)
 
Theoremenfi 7003 Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
(𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
 
Theoremenfii 7004 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
 
Theoremssfilem 7005* Lemma for ssfiexmid 7006. (Contributed by Jim Kingdon, 3-Feb-2022.)
{𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin       (𝜑 ∨ ¬ 𝜑)
 
Theoremssfiexmid 7006* If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoreminfiexmid 7007* If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
(𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdomfiexmid 7008* If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdif1en 7009 If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
 
Theoremdif1enen 7010 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝐵)       (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
 
Theoremfiunsnnn 7011 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
 
Theoremphp5fin 7012 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
 
Theoremfisbth 7013 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
Theorem0fin 7014 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
∅ ∈ Fin
 
Theoremfin0 7015* A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
 
Theoremfin0or 7016* A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥𝐴))
 
Theoremdiffitest 7017* If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin       𝜑 ∨ ¬ ¬ 𝜑)
 
Theoremfindcard 7018* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2 7019* Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2s 7020* Variation of findcard2 7019 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2d 7021* Deduction version of findcard2 7019. If you also need 𝑦 ∈ Fin (which doesn't come for free due to ssfiexmid 7006), use findcard2sd 7022 instead. (Contributed by SO, 16-Jul-2018.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremfindcard2sd 7022* Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremdiffisn 7023 Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
 
Theoremdiffifi 7024 Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
 
Theoreminfnfi 7025 An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
 
Theoremominf 7026 The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6888. (Contributed by NM, 2-Jun-1998.)
¬ ω ∈ Fin
 
Theoremisinfinf 7027* An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
(ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
 
Theoremac6sfi 7028* Existence of a choice function for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
(𝑦 = (𝑓𝑥) → (𝜑𝜓))       ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremtridc 7029* A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)       (𝜑DECID 𝐵𝑅𝐶)
 
Theoremfimax2gtrilemstep 7030* Lemma for fimax2gtri 7031. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝑈 ∈ Fin)    &   (𝜑𝑈𝐴)    &   (𝜑𝑍𝐴)    &   (𝜑𝑉𝐴)    &   (𝜑 → ¬ 𝑉𝑈)    &   (𝜑 → ∀𝑦𝑈 ¬ 𝑍𝑅𝑦)       (𝜑 → ∃𝑥𝐴𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦)
 
Theoremfimax2gtri 7031* A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
 
Theoremfinexdc 7032* Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
 
Theoremdfrex2fin 7033* Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑))
 
Theoreminfm 7034* An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
(ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
 
Theoreminfn0 7035 An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
(ω ≼ 𝐴𝐴 ≠ ∅)
 
Theoreminffiexmid 7036* If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
(𝑥 ∈ Fin ∨ ω ≼ 𝑥)       (𝜑 ∨ ¬ 𝜑)
 
Theoremen2eqpr 7037 Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
 
Theoremexmidpw 7038 Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ 𝒫 1o ≈ 2o)
 
Theoremexmidpweq 7039 Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
(EXMID ↔ 𝒫 1o = 2o)
 
Theorempw1fin 7040 Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
(EXMID ↔ 𝒫 1o ∈ Fin)
 
Theorempw1dc0el 7041 Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
 
Theoremexmidpw2en 7042 The power set of a set being equinumerous to set exponentiation with a base of ordinal 2o is equivalent to excluded middle. This is Metamath 100 proof #52. The forward direction uses excluded middle expressed as EXMID to show this equinumerosity.

The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

(EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥))
 
Theoremss1o0el1o 7043 Reformulation of ss1o0el1 4260 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
(𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
 
Theorempw1dc1 7044 If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
 
Theoremfientri3 7045 Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
 
Theoremnnwetri 7046* A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
(𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
 
Theoremonunsnss 7047 Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
 
Theoremunfiexmid 7048* If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremunsnfi 7049 Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
 
Theoremunsnfidcex 7050 The 𝐵𝑉 condition in unsnfi 7049. This is intended to show that unsnfi 7049 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
 
Theoremunsnfidcel 7051 The ¬ 𝐵𝐴 condition in unsnfi 7049. This is intended to show that unsnfi 7049 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
 
Theoremunfidisj 7052 The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
 
Theoremundifdcss 7053* Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
(𝐴 = (𝐵 ∪ (𝐴𝐵)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵))
 
Theoremundifdc 7054* Union of complementary parts into whole. This is a case where we can strengthen undifss 3552 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
Theoremundiffi 7055 Union of complementary parts into whole. This is a case where we can strengthen undifss 3552 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
Theoremunfiin 7056 The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
 
Theoremprfidisj 7057 A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6937. For the cases where one or both is a proper class, see prprc1 3754, prprc2 3755, or prprc 3756. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
 
Theoremprfidceq 7058* A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)    &   (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)       (𝜑 → {𝐴, 𝐵} ∈ Fin)
 
Theoremtpfidisj 7059 A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
 
Theoremtpfidceq 7060* A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
(𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝐷)    &   (𝜑 → ∀𝑥𝐷𝑦𝐷 DECID 𝑥 = 𝑦)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
 
Theoremfiintim 7061* If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

(∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
 
Theoremxpfi 7062 The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
 
Theorem3xpfi 7063 The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
(𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin)
 
Theoremfisseneq 7064 A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
 
Theoremphpeqd 7065 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6995 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremssfirab 7066* A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴 DECID 𝜓)       (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
 
Theoremssfidc 7067* A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐵 ∈ Fin)
 
Theoremopabfi 7068* Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)       (𝜑𝑆 ∈ Fin)
 
Theoreminfidc 7069* The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → (𝐴𝐵) ∈ Fin)
 
Theoremsnon0 7070 An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
 
Theoremfnfi 7071 A version of fnex 5834 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
 
Theoremfundmfi 7072 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
 
Theoremfundmfibi 7073 A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
(Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
 
Theoremresfnfinfinss 7074 The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
((𝐹 Fn 𝐴𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐹𝐵) ∈ Fin)
 
Theoremresidfi 7075 A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.)
(( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)
 
Theoremrelcnvfi 7076 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
 
Theoremfunrnfi 7077 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
 
Theoremf1ofi 7078 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ Fin)
 
Theoremf1dmvrnfibi 7079 A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7080. (Contributed by AV, 10-Jan-2020.)
((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremf1vrnfibi 7080 A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 7079. (Contributed by AV, 10-Jan-2020.)
((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremiunfidisj 7081* The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
 
Theoremf1finf1o 7082 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
 
Theoremen1eqsn 7083 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
 
Theoremen1eqsnbi 7084 A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
(𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
 
Theoremsnexxph 7085* A case where the antecedent of snexg 4247 is not needed. The class {𝑥𝜑} is from dcextest 4650. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
{{𝑥𝜑}} ∈ V
 
Theorempreimaf1ofi 7086 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐶𝐵)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → (𝐹𝐶) ∈ Fin)
 
Theoremfidcenumlemim 7087* Lemma for fidcenum 7091. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
Theoremfidcenumlemrks 7088* Lemma for fidcenum 7091. Induction step for fidcenumlemrk 7089. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐽 ∈ ω)    &   (𝜑 → suc 𝐽𝑁)    &   (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
 
Theoremfidcenumlemrk 7089* Lemma for fidcenum 7091. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝐾𝑁)    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))
 
Theoremfidcenumlemr 7090* Lemma for fidcenum 7091. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)       (𝜑𝐴 ∈ Fin)
 
Theoremfidcenum 7091* A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
2.6.32  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 7092* Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}        𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
 
Theoremsbthlem2 7093* Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
 
Theoremsbthlemi3 7094* Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
 
Theoremsbthlemi4 7095* Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
 
Theoremsbthlemi5 7096* Lemma for isbth 7102. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
 
Theoremsbthlemi6 7097* Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
 
Theoremsbthlem7 7098* Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
 
Theoremsbthlemi8 7099* Lemma for isbth 7102. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
 
Theoremsbthlemi9 7100* Lemma for isbth 7102. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >