Step | Hyp | Ref
| Expression |
1 | | df-case 7085 |
. . . 4
β’
case(πΉ, πΊ) = ((πΉ β β‘inl) βͺ (πΊ β β‘inr)) |
2 | 1 | fveq1i 5518 |
. . 3
β’
(case(πΉ, πΊ)β(inrβπ΄)) = (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inrβπ΄)) |
3 | | caseinr.f |
. . . . . 6
β’ (π β Fun πΉ) |
4 | | djulf1o 7059 |
. . . . . . . 8
β’
inl:Vβ1-1-ontoβ({β
} Γ V) |
5 | | f1ocnv 5476 |
. . . . . . . 8
β’
(inl:Vβ1-1-ontoβ({β
} Γ V) β β‘inl:({β
} Γ V)β1-1-ontoβV) |
6 | 4, 5 | ax-mp 5 |
. . . . . . 7
β’ β‘inl:({β
} Γ V)β1-1-ontoβV |
7 | | f1ofun 5465 |
. . . . . . 7
β’ (β‘inl:({β
} Γ V)β1-1-ontoβV β Fun β‘inl) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
β’ Fun β‘inl |
9 | | funco 5258 |
. . . . . 6
β’ ((Fun
πΉ β§ Fun β‘inl) β Fun (πΉ β β‘inl)) |
10 | 3, 8, 9 | sylancl 413 |
. . . . 5
β’ (π β Fun (πΉ β β‘inl)) |
11 | | dmco 5139 |
. . . . . . 7
β’ dom
(πΉ β β‘inl) = (β‘β‘inl
β dom πΉ) |
12 | | imacnvcnv 5095 |
. . . . . . 7
β’ (β‘β‘inl
β dom πΉ) = (inl
β dom πΉ) |
13 | 11, 12 | eqtri 2198 |
. . . . . 6
β’ dom
(πΉ β β‘inl) = (inl β dom πΉ) |
14 | 13 | a1i 9 |
. . . . 5
β’ (π β dom (πΉ β β‘inl) = (inl β dom πΉ)) |
15 | | df-fn 5221 |
. . . . 5
β’ ((πΉ β β‘inl) Fn (inl β dom πΉ) β (Fun (πΉ β β‘inl) β§ dom (πΉ β β‘inl) = (inl β dom πΉ))) |
16 | 10, 14, 15 | sylanbrc 417 |
. . . 4
β’ (π β (πΉ β β‘inl) Fn (inl β dom πΉ)) |
17 | | caseinr.g |
. . . . . . 7
β’ (π β πΊ Fn π΅) |
18 | | fnfun 5315 |
. . . . . . 7
β’ (πΊ Fn π΅ β Fun πΊ) |
19 | 17, 18 | syl 14 |
. . . . . 6
β’ (π β Fun πΊ) |
20 | | djurf1o 7060 |
. . . . . . . 8
β’
inr:Vβ1-1-ontoβ({1o} Γ V) |
21 | | f1ocnv 5476 |
. . . . . . . 8
β’
(inr:Vβ1-1-ontoβ({1o} Γ V) β β‘inr:({1o} Γ V)β1-1-ontoβV) |
22 | 20, 21 | ax-mp 5 |
. . . . . . 7
β’ β‘inr:({1o} Γ V)β1-1-ontoβV |
23 | | f1ofun 5465 |
. . . . . . 7
β’ (β‘inr:({1o} Γ V)β1-1-ontoβV β Fun β‘inr) |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
β’ Fun β‘inr |
25 | | funco 5258 |
. . . . . 6
β’ ((Fun
πΊ β§ Fun β‘inr) β Fun (πΊ β β‘inr)) |
26 | 19, 24, 25 | sylancl 413 |
. . . . 5
β’ (π β Fun (πΊ β β‘inr)) |
27 | | dmco 5139 |
. . . . . 6
β’ dom
(πΊ β β‘inr) = (β‘β‘inr
β dom πΊ) |
28 | | df-inr 7049 |
. . . . . . . . . . 11
β’ inr =
(π₯ β V β¦
β¨1o, π₯β©) |
29 | 28 | funmpt2 5257 |
. . . . . . . . . 10
β’ Fun
inr |
30 | | funrel 5235 |
. . . . . . . . . 10
β’ (Fun inr
β Rel inr) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
β’ Rel
inr |
32 | | dfrel2 5081 |
. . . . . . . . 9
β’ (Rel inr
β β‘β‘inr = inr) |
33 | 31, 32 | mpbi 145 |
. . . . . . . 8
β’ β‘β‘inr
= inr |
34 | 33 | a1i 9 |
. . . . . . 7
β’ (π β β‘β‘inr
= inr) |
35 | | fndm 5317 |
. . . . . . . 8
β’ (πΊ Fn π΅ β dom πΊ = π΅) |
36 | 17, 35 | syl 14 |
. . . . . . 7
β’ (π β dom πΊ = π΅) |
37 | 34, 36 | imaeq12d 4973 |
. . . . . 6
β’ (π β (β‘β‘inr
β dom πΊ) = (inr
β π΅)) |
38 | 27, 37 | eqtrid 2222 |
. . . . 5
β’ (π β dom (πΊ β β‘inr) = (inr β π΅)) |
39 | | df-fn 5221 |
. . . . 5
β’ ((πΊ β β‘inr) Fn (inr β π΅) β (Fun (πΊ β β‘inr) β§ dom (πΊ β β‘inr) = (inr β π΅))) |
40 | 26, 38, 39 | sylanbrc 417 |
. . . 4
β’ (π β (πΊ β β‘inr) Fn (inr β π΅)) |
41 | | djuin 7065 |
. . . . 5
β’ ((inl
β dom πΉ) β© (inr
β π΅)) =
β
|
42 | 41 | a1i 9 |
. . . 4
β’ (π β ((inl β dom πΉ) β© (inr β π΅)) = β
) |
43 | | caseinr.a |
. . . . . . . 8
β’ (π β π΄ β π΅) |
44 | 43 | elexd 2752 |
. . . . . . 7
β’ (π β π΄ β V) |
45 | | f1odm 5467 |
. . . . . . . 8
β’
(inr:Vβ1-1-ontoβ({1o} Γ V) β dom inr =
V) |
46 | 20, 45 | ax-mp 5 |
. . . . . . 7
β’ dom inr =
V |
47 | 44, 46 | eleqtrrdi 2271 |
. . . . . 6
β’ (π β π΄ β dom inr) |
48 | 47, 29 | jctil 312 |
. . . . 5
β’ (π β (Fun inr β§ π΄ β dom
inr)) |
49 | | funfvima 5750 |
. . . . 5
β’ ((Fun inr
β§ π΄ β dom inr)
β (π΄ β π΅ β (inrβπ΄) β (inr β π΅))) |
50 | 48, 43, 49 | sylc 62 |
. . . 4
β’ (π β (inrβπ΄) β (inr β π΅)) |
51 | | fvun2 5585 |
. . . 4
β’ (((πΉ β β‘inl) Fn (inl β dom πΉ) β§ (πΊ β β‘inr) Fn (inr β π΅) β§ (((inl β dom πΉ) β© (inr β π΅)) = β
β§ (inrβπ΄) β (inr β π΅))) β (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inrβπ΄)) = ((πΊ β β‘inr)β(inrβπ΄))) |
52 | 16, 40, 42, 50, 51 | syl112anc 1242 |
. . 3
β’ (π β (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inrβπ΄)) = ((πΊ β β‘inr)β(inrβπ΄))) |
53 | 2, 52 | eqtrid 2222 |
. 2
β’ (π β (case(πΉ, πΊ)β(inrβπ΄)) = ((πΊ β β‘inr)β(inrβπ΄))) |
54 | | f1ofn 5464 |
. . . 4
β’ (β‘inr:({1o} Γ V)β1-1-ontoβV β β‘inr Fn ({1o} Γ
V)) |
55 | 22, 54 | ax-mp 5 |
. . 3
β’ β‘inr Fn ({1o} Γ
V) |
56 | | f1of 5463 |
. . . . . 6
β’
(inr:Vβ1-1-ontoβ({1o} Γ V) β
inr:VβΆ({1o} Γ V)) |
57 | 20, 56 | ax-mp 5 |
. . . . 5
β’
inr:VβΆ({1o} Γ V) |
58 | 57 | a1i 9 |
. . . 4
β’ (π β
inr:VβΆ({1o} Γ V)) |
59 | 58, 44 | ffvelcdmd 5654 |
. . 3
β’ (π β (inrβπ΄) β ({1o}
Γ V)) |
60 | | fvco2 5587 |
. . 3
β’ ((β‘inr Fn ({1o} Γ V) β§
(inrβπ΄) β
({1o} Γ V)) β ((πΊ β β‘inr)β(inrβπ΄)) = (πΊβ(β‘inrβ(inrβπ΄)))) |
61 | 55, 59, 60 | sylancr 414 |
. 2
β’ (π β ((πΊ β β‘inr)β(inrβπ΄)) = (πΊβ(β‘inrβ(inrβπ΄)))) |
62 | | f1ocnvfv1 5780 |
. . . 4
β’
((inr:Vβ1-1-ontoβ({1o} Γ V) β§ π΄ β V) β (β‘inrβ(inrβπ΄)) = π΄) |
63 | 20, 44, 62 | sylancr 414 |
. . 3
β’ (π β (β‘inrβ(inrβπ΄)) = π΄) |
64 | 63 | fveq2d 5521 |
. 2
β’ (π β (πΊβ(β‘inrβ(inrβπ΄))) = (πΊβπ΄)) |
65 | 53, 61, 64 | 3eqtrd 2214 |
1
β’ (π β (case(πΉ, πΊ)β(inrβπ΄)) = (πΊβπ΄)) |