Proof of Theorem caseinr
Step | Hyp | Ref
| Expression |
1 | | df-case 7049 |
. . . 4
⊢
case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
2 | 1 | fveq1i 5487 |
. . 3
⊢
(case(𝐹, 𝐺)‘(inr‘𝐴)) = (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inr‘𝐴)) |
3 | | caseinr.f |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
4 | | djulf1o 7023 |
. . . . . . . 8
⊢
inl:V–1-1-onto→({∅} × V) |
5 | | f1ocnv 5445 |
. . . . . . . 8
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) |
6 | 4, 5 | ax-mp 5 |
. . . . . . 7
⊢ ◡inl:({∅} × V)–1-1-onto→V |
7 | | f1ofun 5434 |
. . . . . . 7
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
⊢ Fun ◡inl |
9 | | funco 5228 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ Fun ◡inl) → Fun (𝐹 ∘ ◡inl)) |
10 | 3, 8, 9 | sylancl 410 |
. . . . 5
⊢ (𝜑 → Fun (𝐹 ∘ ◡inl)) |
11 | | dmco 5112 |
. . . . . . 7
⊢ dom
(𝐹 ∘ ◡inl) = (◡◡inl
“ dom 𝐹) |
12 | | imacnvcnv 5068 |
. . . . . . 7
⊢ (◡◡inl
“ dom 𝐹) = (inl
“ dom 𝐹) |
13 | 11, 12 | eqtri 2186 |
. . . . . 6
⊢ dom
(𝐹 ∘ ◡inl) = (inl “ dom 𝐹) |
14 | 13 | a1i 9 |
. . . . 5
⊢ (𝜑 → dom (𝐹 ∘ ◡inl) = (inl “ dom 𝐹)) |
15 | | df-fn 5191 |
. . . . 5
⊢ ((𝐹 ∘ ◡inl) Fn (inl “ dom 𝐹) ↔ (Fun (𝐹 ∘ ◡inl) ∧ dom (𝐹 ∘ ◡inl) = (inl “ dom 𝐹))) |
16 | 10, 14, 15 | sylanbrc 414 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ ◡inl) Fn (inl “ dom 𝐹)) |
17 | | caseinr.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn 𝐵) |
18 | | fnfun 5285 |
. . . . . . 7
⊢ (𝐺 Fn 𝐵 → Fun 𝐺) |
19 | 17, 18 | syl 14 |
. . . . . 6
⊢ (𝜑 → Fun 𝐺) |
20 | | djurf1o 7024 |
. . . . . . . 8
⊢
inr:V–1-1-onto→({1o} × V) |
21 | | f1ocnv 5445 |
. . . . . . . 8
⊢
(inr:V–1-1-onto→({1o} × V) → ◡inr:({1o} × V)–1-1-onto→V) |
22 | 20, 21 | ax-mp 5 |
. . . . . . 7
⊢ ◡inr:({1o} × V)–1-1-onto→V |
23 | | f1ofun 5434 |
. . . . . . 7
⊢ (◡inr:({1o} × V)–1-1-onto→V → Fun ◡inr) |
24 | 22, 23 | ax-mp 5 |
. . . . . 6
⊢ Fun ◡inr |
25 | | funco 5228 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ Fun ◡inr) → Fun (𝐺 ∘ ◡inr)) |
26 | 19, 24, 25 | sylancl 410 |
. . . . 5
⊢ (𝜑 → Fun (𝐺 ∘ ◡inr)) |
27 | | dmco 5112 |
. . . . . 6
⊢ dom
(𝐺 ∘ ◡inr) = (◡◡inr
“ dom 𝐺) |
28 | | df-inr 7013 |
. . . . . . . . . . 11
⊢ inr =
(𝑥 ∈ V ↦
〈1o, 𝑥〉) |
29 | 28 | funmpt2 5227 |
. . . . . . . . . 10
⊢ Fun
inr |
30 | | funrel 5205 |
. . . . . . . . . 10
⊢ (Fun inr
→ Rel inr) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
⊢ Rel
inr |
32 | | dfrel2 5054 |
. . . . . . . . 9
⊢ (Rel inr
↔ ◡◡inr = inr) |
33 | 31, 32 | mpbi 144 |
. . . . . . . 8
⊢ ◡◡inr
= inr |
34 | 33 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → ◡◡inr
= inr) |
35 | | fndm 5287 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) |
36 | 17, 35 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom 𝐺 = 𝐵) |
37 | 34, 36 | imaeq12d 4947 |
. . . . . 6
⊢ (𝜑 → (◡◡inr
“ dom 𝐺) = (inr
“ 𝐵)) |
38 | 27, 37 | syl5eq 2211 |
. . . . 5
⊢ (𝜑 → dom (𝐺 ∘ ◡inr) = (inr “ 𝐵)) |
39 | | df-fn 5191 |
. . . . 5
⊢ ((𝐺 ∘ ◡inr) Fn (inr “ 𝐵) ↔ (Fun (𝐺 ∘ ◡inr) ∧ dom (𝐺 ∘ ◡inr) = (inr “ 𝐵))) |
40 | 26, 38, 39 | sylanbrc 414 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ ◡inr) Fn (inr “ 𝐵)) |
41 | | djuin 7029 |
. . . . 5
⊢ ((inl
“ dom 𝐹) ∩ (inr
“ 𝐵)) =
∅ |
42 | 41 | a1i 9 |
. . . 4
⊢ (𝜑 → ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅) |
43 | | caseinr.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
44 | 43 | elexd 2739 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
45 | | f1odm 5436 |
. . . . . . . 8
⊢
(inr:V–1-1-onto→({1o} × V) → dom inr =
V) |
46 | 20, 45 | ax-mp 5 |
. . . . . . 7
⊢ dom inr =
V |
47 | 44, 46 | eleqtrrdi 2260 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom inr) |
48 | 47, 29 | jctil 310 |
. . . . 5
⊢ (𝜑 → (Fun inr ∧ 𝐴 ∈ dom
inr)) |
49 | | funfvima 5716 |
. . . . 5
⊢ ((Fun inr
∧ 𝐴 ∈ dom inr)
→ (𝐴 ∈ 𝐵 → (inr‘𝐴) ∈ (inr “ 𝐵))) |
50 | 48, 43, 49 | sylc 62 |
. . . 4
⊢ (𝜑 → (inr‘𝐴) ∈ (inr “ 𝐵)) |
51 | | fvun2 5553 |
. . . 4
⊢ (((𝐹 ∘ ◡inl) Fn (inl “ dom 𝐹) ∧ (𝐺 ∘ ◡inr) Fn (inr “ 𝐵) ∧ (((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅ ∧ (inr‘𝐴) ∈ (inr “ 𝐵))) → (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inr‘𝐴)) = ((𝐺 ∘ ◡inr)‘(inr‘𝐴))) |
52 | 16, 40, 42, 50, 51 | syl112anc 1232 |
. . 3
⊢ (𝜑 → (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inr‘𝐴)) = ((𝐺 ∘ ◡inr)‘(inr‘𝐴))) |
53 | 2, 52 | syl5eq 2211 |
. 2
⊢ (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = ((𝐺 ∘ ◡inr)‘(inr‘𝐴))) |
54 | | f1ofn 5433 |
. . . 4
⊢ (◡inr:({1o} × V)–1-1-onto→V → ◡inr Fn ({1o} ×
V)) |
55 | 22, 54 | ax-mp 5 |
. . 3
⊢ ◡inr Fn ({1o} ×
V) |
56 | | f1of 5432 |
. . . . . 6
⊢
(inr:V–1-1-onto→({1o} × V) →
inr:V⟶({1o} × V)) |
57 | 20, 56 | ax-mp 5 |
. . . . 5
⊢
inr:V⟶({1o} × V) |
58 | 57 | a1i 9 |
. . . 4
⊢ (𝜑 →
inr:V⟶({1o} × V)) |
59 | 58, 44 | ffvelrnd 5621 |
. . 3
⊢ (𝜑 → (inr‘𝐴) ∈ ({1o}
× V)) |
60 | | fvco2 5555 |
. . 3
⊢ ((◡inr Fn ({1o} × V) ∧
(inr‘𝐴) ∈
({1o} × V)) → ((𝐺 ∘ ◡inr)‘(inr‘𝐴)) = (𝐺‘(◡inr‘(inr‘𝐴)))) |
61 | 55, 59, 60 | sylancr 411 |
. 2
⊢ (𝜑 → ((𝐺 ∘ ◡inr)‘(inr‘𝐴)) = (𝐺‘(◡inr‘(inr‘𝐴)))) |
62 | | f1ocnvfv1 5745 |
. . . 4
⊢
((inr:V–1-1-onto→({1o} × V) ∧ 𝐴 ∈ V) → (◡inr‘(inr‘𝐴)) = 𝐴) |
63 | 20, 44, 62 | sylancr 411 |
. . 3
⊢ (𝜑 → (◡inr‘(inr‘𝐴)) = 𝐴) |
64 | 63 | fveq2d 5490 |
. 2
⊢ (𝜑 → (𝐺‘(◡inr‘(inr‘𝐴))) = (𝐺‘𝐴)) |
65 | 53, 61, 64 | 3eqtrd 2202 |
1
⊢ (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺‘𝐴)) |