ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr GIF version

Theorem caseinr 7069
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f (𝜑 → Fun 𝐹)
caseinr.g (𝜑𝐺 Fn 𝐵)
caseinr.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinr (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7061 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5497 . . 3 (case(𝐹, 𝐺)‘(inr‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴))
3 caseinr.f . . . . . 6 (𝜑 → Fun 𝐹)
4 djulf1o 7035 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
5 f1ocnv 5455 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
64, 5ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
7 f1ofun 5444 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
86, 7ax-mp 5 . . . . . 6 Fun inl
9 funco 5238 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
103, 8, 9sylancl 411 . . . . 5 (𝜑 → Fun (𝐹inl))
11 dmco 5119 . . . . . . 7 dom (𝐹inl) = (inl “ dom 𝐹)
12 imacnvcnv 5075 . . . . . . 7 (inl “ dom 𝐹) = (inl “ dom 𝐹)
1311, 12eqtri 2191 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
1413a1i 9 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ dom 𝐹))
15 df-fn 5201 . . . . 5 ((𝐹inl) Fn (inl “ dom 𝐹) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ dom 𝐹)))
1610, 14, 15sylanbrc 415 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ dom 𝐹))
17 caseinr.g . . . . . . 7 (𝜑𝐺 Fn 𝐵)
18 fnfun 5295 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝐺)
20 djurf1o 7036 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
21 f1ocnv 5455 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
2220, 21ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
23 f1ofun 5444 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
2422, 23ax-mp 5 . . . . . 6 Fun inr
25 funco 5238 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
2619, 24, 25sylancl 411 . . . . 5 (𝜑 → Fun (𝐺inr))
27 dmco 5119 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
28 df-inr 7025 . . . . . . . . . . 11 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2928funmpt2 5237 . . . . . . . . . 10 Fun inr
30 funrel 5215 . . . . . . . . . 10 (Fun inr → Rel inr)
3129, 30ax-mp 5 . . . . . . . . 9 Rel inr
32 dfrel2 5061 . . . . . . . . 9 (Rel inr ↔ inr = inr)
3331, 32mpbi 144 . . . . . . . 8 inr = inr
3433a1i 9 . . . . . . 7 (𝜑inr = inr)
35 fndm 5297 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
3617, 35syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
3734, 36imaeq12d 4954 . . . . . 6 (𝜑 → (inr “ dom 𝐺) = (inr “ 𝐵))
3827, 37eqtrid 2215 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ 𝐵))
39 df-fn 5201 . . . . 5 ((𝐺inr) Fn (inr “ 𝐵) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ 𝐵)))
4026, 38, 39sylanbrc 415 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ 𝐵))
41 djuin 7041 . . . . 5 ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅)
43 caseinr.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2743 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5446 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
4620, 45ax-mp 5 . . . . . . 7 dom inr = V
4744, 46eleqtrrdi 2264 . . . . . 6 (𝜑𝐴 ∈ dom inr)
4847, 29jctil 310 . . . . 5 (𝜑 → (Fun inr ∧ 𝐴 ∈ dom inr))
49 funfvima 5727 . . . . 5 ((Fun inr ∧ 𝐴 ∈ dom inr) → (𝐴𝐵 → (inr‘𝐴) ∈ (inr “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inr‘𝐴) ∈ (inr “ 𝐵))
51 fvun2 5563 . . . 4 (((𝐹inl) Fn (inl “ dom 𝐹) ∧ (𝐺inr) Fn (inr “ 𝐵) ∧ (((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅ ∧ (inr‘𝐴) ∈ (inr “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
5216, 40, 42, 50, 51syl112anc 1237 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
532, 52eqtrid 2215 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
54 f1ofn 5443 . . . 4 (inr:({1o} × V)–1-1-onto→V → inr Fn ({1o} × V))
5522, 54ax-mp 5 . . 3 inr Fn ({1o} × V)
56 f1of 5442 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5720, 56ax-mp 5 . . . . 5 inr:V⟶({1o} × V)
5857a1i 9 . . . 4 (𝜑 → inr:V⟶({1o} × V))
5958, 44ffvelrnd 5632 . . 3 (𝜑 → (inr‘𝐴) ∈ ({1o} × V))
60 fvco2 5565 . . 3 ((inr Fn ({1o} × V) ∧ (inr‘𝐴) ∈ ({1o} × V)) → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
6155, 59, 60sylancr 412 . 2 (𝜑 → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
62 f1ocnvfv1 5756 . . . 4 ((inr:V–1-1-onto→({1o} × V) ∧ 𝐴 ∈ V) → (inr‘(inr‘𝐴)) = 𝐴)
6320, 44, 62sylancr 412 . . 3 (𝜑 → (inr‘(inr‘𝐴)) = 𝐴)
6463fveq2d 5500 . 2 (𝜑 → (𝐺‘(inr‘(inr‘𝐴))) = (𝐺𝐴))
6553, 61, 643eqtrd 2207 1 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  cin 3120  c0 3414  {csn 3583  cop 3586   × cxp 4609  ccnv 4610  dom cdm 4611  cima 4614  ccom 4615  Rel wrel 4616  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1-ontowf1o 5197  cfv 5198  1oc1o 6388  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  omp1eomlem  7071
  Copyright terms: Public domain W3C validator