ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr GIF version

Theorem caseinr 7153
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f (𝜑 → Fun 𝐹)
caseinr.g (𝜑𝐺 Fn 𝐵)
caseinr.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinr (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7145 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5556 . . 3 (case(𝐹, 𝐺)‘(inr‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴))
3 caseinr.f . . . . . 6 (𝜑 → Fun 𝐹)
4 djulf1o 7119 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
5 f1ocnv 5514 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
64, 5ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
7 f1ofun 5503 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
86, 7ax-mp 5 . . . . . 6 Fun inl
9 funco 5295 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
103, 8, 9sylancl 413 . . . . 5 (𝜑 → Fun (𝐹inl))
11 dmco 5175 . . . . . . 7 dom (𝐹inl) = (inl “ dom 𝐹)
12 imacnvcnv 5131 . . . . . . 7 (inl “ dom 𝐹) = (inl “ dom 𝐹)
1311, 12eqtri 2214 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
1413a1i 9 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ dom 𝐹))
15 df-fn 5258 . . . . 5 ((𝐹inl) Fn (inl “ dom 𝐹) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ dom 𝐹)))
1610, 14, 15sylanbrc 417 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ dom 𝐹))
17 caseinr.g . . . . . . 7 (𝜑𝐺 Fn 𝐵)
18 fnfun 5352 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝐺)
20 djurf1o 7120 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
21 f1ocnv 5514 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
2220, 21ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
23 f1ofun 5503 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
2422, 23ax-mp 5 . . . . . 6 Fun inr
25 funco 5295 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
2619, 24, 25sylancl 413 . . . . 5 (𝜑 → Fun (𝐺inr))
27 dmco 5175 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
28 df-inr 7109 . . . . . . . . . . 11 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2928funmpt2 5294 . . . . . . . . . 10 Fun inr
30 funrel 5272 . . . . . . . . . 10 (Fun inr → Rel inr)
3129, 30ax-mp 5 . . . . . . . . 9 Rel inr
32 dfrel2 5117 . . . . . . . . 9 (Rel inr ↔ inr = inr)
3331, 32mpbi 145 . . . . . . . 8 inr = inr
3433a1i 9 . . . . . . 7 (𝜑inr = inr)
35 fndm 5354 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
3617, 35syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
3734, 36imaeq12d 5007 . . . . . 6 (𝜑 → (inr “ dom 𝐺) = (inr “ 𝐵))
3827, 37eqtrid 2238 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ 𝐵))
39 df-fn 5258 . . . . 5 ((𝐺inr) Fn (inr “ 𝐵) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ 𝐵)))
4026, 38, 39sylanbrc 417 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ 𝐵))
41 djuin 7125 . . . . 5 ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅)
43 caseinr.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2773 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5505 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
4620, 45ax-mp 5 . . . . . . 7 dom inr = V
4744, 46eleqtrrdi 2287 . . . . . 6 (𝜑𝐴 ∈ dom inr)
4847, 29jctil 312 . . . . 5 (𝜑 → (Fun inr ∧ 𝐴 ∈ dom inr))
49 funfvima 5791 . . . . 5 ((Fun inr ∧ 𝐴 ∈ dom inr) → (𝐴𝐵 → (inr‘𝐴) ∈ (inr “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inr‘𝐴) ∈ (inr “ 𝐵))
51 fvun2 5625 . . . 4 (((𝐹inl) Fn (inl “ dom 𝐹) ∧ (𝐺inr) Fn (inr “ 𝐵) ∧ (((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅ ∧ (inr‘𝐴) ∈ (inr “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
5216, 40, 42, 50, 51syl112anc 1253 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
532, 52eqtrid 2238 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
54 f1ofn 5502 . . . 4 (inr:({1o} × V)–1-1-onto→V → inr Fn ({1o} × V))
5522, 54ax-mp 5 . . 3 inr Fn ({1o} × V)
56 f1of 5501 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5720, 56ax-mp 5 . . . . 5 inr:V⟶({1o} × V)
5857a1i 9 . . . 4 (𝜑 → inr:V⟶({1o} × V))
5958, 44ffvelcdmd 5695 . . 3 (𝜑 → (inr‘𝐴) ∈ ({1o} × V))
60 fvco2 5627 . . 3 ((inr Fn ({1o} × V) ∧ (inr‘𝐴) ∈ ({1o} × V)) → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
6155, 59, 60sylancr 414 . 2 (𝜑 → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
62 f1ocnvfv1 5821 . . . 4 ((inr:V–1-1-onto→({1o} × V) ∧ 𝐴 ∈ V) → (inr‘(inr‘𝐴)) = 𝐴)
6320, 44, 62sylancr 414 . . 3 (𝜑 → (inr‘(inr‘𝐴)) = 𝐴)
6463fveq2d 5559 . 2 (𝜑 → (𝐺‘(inr‘(inr‘𝐴))) = (𝐺𝐴))
6553, 61, 643eqtrd 2230 1 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cun 3152  cin 3153  c0 3447  {csn 3619  cop 3622   × cxp 4658  ccnv 4659  dom cdm 4660  cima 4663  ccom 4664  Rel wrel 4665  Fun wfun 5249   Fn wfn 5250  wf 5251  1-1-ontowf1o 5254  cfv 5255  1oc1o 6464  inlcinl 7106  inrcinr 7107  casecdjucase 7144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  omp1eomlem  7155
  Copyright terms: Public domain W3C validator