ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr GIF version

Theorem caseinr 7194
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f (𝜑 → Fun 𝐹)
caseinr.g (𝜑𝐺 Fn 𝐵)
caseinr.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinr (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 7186 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5577 . . 3 (case(𝐹, 𝐺)‘(inr‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴))
3 caseinr.f . . . . . 6 (𝜑 → Fun 𝐹)
4 djulf1o 7160 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
5 f1ocnv 5535 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
64, 5ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
7 f1ofun 5524 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
86, 7ax-mp 5 . . . . . 6 Fun inl
9 funco 5311 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
103, 8, 9sylancl 413 . . . . 5 (𝜑 → Fun (𝐹inl))
11 dmco 5191 . . . . . . 7 dom (𝐹inl) = (inl “ dom 𝐹)
12 imacnvcnv 5147 . . . . . . 7 (inl “ dom 𝐹) = (inl “ dom 𝐹)
1311, 12eqtri 2226 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
1413a1i 9 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ dom 𝐹))
15 df-fn 5274 . . . . 5 ((𝐹inl) Fn (inl “ dom 𝐹) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ dom 𝐹)))
1610, 14, 15sylanbrc 417 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ dom 𝐹))
17 caseinr.g . . . . . . 7 (𝜑𝐺 Fn 𝐵)
18 fnfun 5371 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝐺)
20 djurf1o 7161 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
21 f1ocnv 5535 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
2220, 21ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
23 f1ofun 5524 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
2422, 23ax-mp 5 . . . . . 6 Fun inr
25 funco 5311 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
2619, 24, 25sylancl 413 . . . . 5 (𝜑 → Fun (𝐺inr))
27 dmco 5191 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
28 df-inr 7150 . . . . . . . . . . 11 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2928funmpt2 5310 . . . . . . . . . 10 Fun inr
30 funrel 5288 . . . . . . . . . 10 (Fun inr → Rel inr)
3129, 30ax-mp 5 . . . . . . . . 9 Rel inr
32 dfrel2 5133 . . . . . . . . 9 (Rel inr ↔ inr = inr)
3331, 32mpbi 145 . . . . . . . 8 inr = inr
3433a1i 9 . . . . . . 7 (𝜑inr = inr)
35 fndm 5373 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
3617, 35syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
3734, 36imaeq12d 5023 . . . . . 6 (𝜑 → (inr “ dom 𝐺) = (inr “ 𝐵))
3827, 37eqtrid 2250 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ 𝐵))
39 df-fn 5274 . . . . 5 ((𝐺inr) Fn (inr “ 𝐵) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ 𝐵)))
4026, 38, 39sylanbrc 417 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ 𝐵))
41 djuin 7166 . . . . 5 ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅)
43 caseinr.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2785 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5526 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
4620, 45ax-mp 5 . . . . . . 7 dom inr = V
4744, 46eleqtrrdi 2299 . . . . . 6 (𝜑𝐴 ∈ dom inr)
4847, 29jctil 312 . . . . 5 (𝜑 → (Fun inr ∧ 𝐴 ∈ dom inr))
49 funfvima 5816 . . . . 5 ((Fun inr ∧ 𝐴 ∈ dom inr) → (𝐴𝐵 → (inr‘𝐴) ∈ (inr “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inr‘𝐴) ∈ (inr “ 𝐵))
51 fvun2 5646 . . . 4 (((𝐹inl) Fn (inl “ dom 𝐹) ∧ (𝐺inr) Fn (inr “ 𝐵) ∧ (((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅ ∧ (inr‘𝐴) ∈ (inr “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
5216, 40, 42, 50, 51syl112anc 1254 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
532, 52eqtrid 2250 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
54 f1ofn 5523 . . . 4 (inr:({1o} × V)–1-1-onto→V → inr Fn ({1o} × V))
5522, 54ax-mp 5 . . 3 inr Fn ({1o} × V)
56 f1of 5522 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5720, 56ax-mp 5 . . . . 5 inr:V⟶({1o} × V)
5857a1i 9 . . . 4 (𝜑 → inr:V⟶({1o} × V))
5958, 44ffvelcdmd 5716 . . 3 (𝜑 → (inr‘𝐴) ∈ ({1o} × V))
60 fvco2 5648 . . 3 ((inr Fn ({1o} × V) ∧ (inr‘𝐴) ∈ ({1o} × V)) → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
6155, 59, 60sylancr 414 . 2 (𝜑 → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
62 f1ocnvfv1 5846 . . . 4 ((inr:V–1-1-onto→({1o} × V) ∧ 𝐴 ∈ V) → (inr‘(inr‘𝐴)) = 𝐴)
6320, 44, 62sylancr 414 . . 3 (𝜑 → (inr‘(inr‘𝐴)) = 𝐴)
6463fveq2d 5580 . 2 (𝜑 → (𝐺‘(inr‘(inr‘𝐴))) = (𝐺𝐴))
6553, 61, 643eqtrd 2242 1 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  Vcvv 2772  cun 3164  cin 3165  c0 3460  {csn 3633  cop 3636   × cxp 4673  ccnv 4674  dom cdm 4675  cima 4678  ccom 4679  Rel wrel 4680  Fun wfun 5265   Fn wfn 5266  wf 5267  1-1-ontowf1o 5270  cfv 5271  1oc1o 6495  inlcinl 7147  inrcinr 7148  casecdjucase 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-inl 7149  df-inr 7150  df-case 7186
This theorem is referenced by:  omp1eomlem  7196
  Copyright terms: Public domain W3C validator