Step | Hyp | Ref
| Expression |
1 | | df-case 7083 |
. . . 4
β’
case(πΉ, πΊ) = ((πΉ β β‘inl) βͺ (πΊ β β‘inr)) |
2 | 1 | fveq1i 5517 |
. . 3
β’
(case(πΉ, πΊ)β(inlβπ΄)) = (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inlβπ΄)) |
3 | | caseinl.f |
. . . . . . 7
β’ (π β πΉ Fn π΅) |
4 | | fnfun 5314 |
. . . . . . 7
β’ (πΉ Fn π΅ β Fun πΉ) |
5 | 3, 4 | syl 14 |
. . . . . 6
β’ (π β Fun πΉ) |
6 | | djulf1o 7057 |
. . . . . . . 8
β’
inl:Vβ1-1-ontoβ({β
} Γ V) |
7 | | f1ocnv 5475 |
. . . . . . . 8
β’
(inl:Vβ1-1-ontoβ({β
} Γ V) β β‘inl:({β
} Γ V)β1-1-ontoβV) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
β’ β‘inl:({β
} Γ V)β1-1-ontoβV |
9 | | f1ofun 5464 |
. . . . . . 7
β’ (β‘inl:({β
} Γ V)β1-1-ontoβV β Fun β‘inl) |
10 | 8, 9 | ax-mp 5 |
. . . . . 6
β’ Fun β‘inl |
11 | | funco 5257 |
. . . . . 6
β’ ((Fun
πΉ β§ Fun β‘inl) β Fun (πΉ β β‘inl)) |
12 | 5, 10, 11 | sylancl 413 |
. . . . 5
β’ (π β Fun (πΉ β β‘inl)) |
13 | | dmco 5138 |
. . . . . 6
β’ dom
(πΉ β β‘inl) = (β‘β‘inl
β dom πΉ) |
14 | | df-inl 7046 |
. . . . . . . . . . 11
β’ inl =
(π₯ β V β¦
β¨β
, π₯β©) |
15 | 14 | funmpt2 5256 |
. . . . . . . . . 10
β’ Fun
inl |
16 | | funrel 5234 |
. . . . . . . . . 10
β’ (Fun inl
β Rel inl) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . 9
β’ Rel
inl |
18 | | dfrel2 5080 |
. . . . . . . . 9
β’ (Rel inl
β β‘β‘inl = inl) |
19 | 17, 18 | mpbi 145 |
. . . . . . . 8
β’ β‘β‘inl
= inl |
20 | 19 | a1i 9 |
. . . . . . 7
β’ (π β β‘β‘inl
= inl) |
21 | | fndm 5316 |
. . . . . . . 8
β’ (πΉ Fn π΅ β dom πΉ = π΅) |
22 | 3, 21 | syl 14 |
. . . . . . 7
β’ (π β dom πΉ = π΅) |
23 | 20, 22 | imaeq12d 4972 |
. . . . . 6
β’ (π β (β‘β‘inl
β dom πΉ) = (inl
β π΅)) |
24 | 13, 23 | eqtrid 2222 |
. . . . 5
β’ (π β dom (πΉ β β‘inl) = (inl β π΅)) |
25 | | df-fn 5220 |
. . . . 5
β’ ((πΉ β β‘inl) Fn (inl β π΅) β (Fun (πΉ β β‘inl) β§ dom (πΉ β β‘inl) = (inl β π΅))) |
26 | 12, 24, 25 | sylanbrc 417 |
. . . 4
β’ (π β (πΉ β β‘inl) Fn (inl β π΅)) |
27 | | caseinl.g |
. . . . . 6
β’ (π β Fun πΊ) |
28 | | djurf1o 7058 |
. . . . . . . 8
β’
inr:Vβ1-1-ontoβ({1o} Γ V) |
29 | | f1ocnv 5475 |
. . . . . . . 8
β’
(inr:Vβ1-1-ontoβ({1o} Γ V) β β‘inr:({1o} Γ V)β1-1-ontoβV) |
30 | 28, 29 | ax-mp 5 |
. . . . . . 7
β’ β‘inr:({1o} Γ V)β1-1-ontoβV |
31 | | f1ofun 5464 |
. . . . . . 7
β’ (β‘inr:({1o} Γ V)β1-1-ontoβV β Fun β‘inr) |
32 | 30, 31 | ax-mp 5 |
. . . . . 6
β’ Fun β‘inr |
33 | | funco 5257 |
. . . . . 6
β’ ((Fun
πΊ β§ Fun β‘inr) β Fun (πΊ β β‘inr)) |
34 | 27, 32, 33 | sylancl 413 |
. . . . 5
β’ (π β Fun (πΊ β β‘inr)) |
35 | | dmco 5138 |
. . . . . . 7
β’ dom
(πΊ β β‘inr) = (β‘β‘inr
β dom πΊ) |
36 | | imacnvcnv 5094 |
. . . . . . 7
β’ (β‘β‘inr
β dom πΊ) = (inr
β dom πΊ) |
37 | 35, 36 | eqtri 2198 |
. . . . . 6
β’ dom
(πΊ β β‘inr) = (inr β dom πΊ) |
38 | 37 | a1i 9 |
. . . . 5
β’ (π β dom (πΊ β β‘inr) = (inr β dom πΊ)) |
39 | | df-fn 5220 |
. . . . 5
β’ ((πΊ β β‘inr) Fn (inr β dom πΊ) β (Fun (πΊ β β‘inr) β§ dom (πΊ β β‘inr) = (inr β dom πΊ))) |
40 | 34, 38, 39 | sylanbrc 417 |
. . . 4
β’ (π β (πΊ β β‘inr) Fn (inr β dom πΊ)) |
41 | | djuin 7063 |
. . . . 5
β’ ((inl
β π΅) β© (inr
β dom πΊ)) =
β
|
42 | 41 | a1i 9 |
. . . 4
β’ (π β ((inl β π΅) β© (inr β dom πΊ)) = β
) |
43 | | caseinl.a |
. . . . . . . 8
β’ (π β π΄ β π΅) |
44 | 43 | elexd 2751 |
. . . . . . 7
β’ (π β π΄ β V) |
45 | | f1odm 5466 |
. . . . . . . 8
β’
(inl:Vβ1-1-ontoβ({β
} Γ V) β dom inl =
V) |
46 | 6, 45 | ax-mp 5 |
. . . . . . 7
β’ dom inl =
V |
47 | 44, 46 | eleqtrrdi 2271 |
. . . . . 6
β’ (π β π΄ β dom inl) |
48 | 47, 15 | jctil 312 |
. . . . 5
β’ (π β (Fun inl β§ π΄ β dom
inl)) |
49 | | funfvima 5749 |
. . . . 5
β’ ((Fun inl
β§ π΄ β dom inl)
β (π΄ β π΅ β (inlβπ΄) β (inl β π΅))) |
50 | 48, 43, 49 | sylc 62 |
. . . 4
β’ (π β (inlβπ΄) β (inl β π΅)) |
51 | | fvun1 5583 |
. . . 4
β’ (((πΉ β β‘inl) Fn (inl β π΅) β§ (πΊ β β‘inr) Fn (inr β dom πΊ) β§ (((inl β π΅) β© (inr β dom πΊ)) = β
β§ (inlβπ΄) β (inl β π΅))) β (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inlβπ΄)) = ((πΉ β β‘inl)β(inlβπ΄))) |
52 | 26, 40, 42, 50, 51 | syl112anc 1242 |
. . 3
β’ (π β (((πΉ β β‘inl) βͺ (πΊ β β‘inr))β(inlβπ΄)) = ((πΉ β β‘inl)β(inlβπ΄))) |
53 | 2, 52 | eqtrid 2222 |
. 2
β’ (π β (case(πΉ, πΊ)β(inlβπ΄)) = ((πΉ β β‘inl)β(inlβπ΄))) |
54 | | f1ofn 5463 |
. . . 4
β’ (β‘inl:({β
} Γ V)β1-1-ontoβV β β‘inl Fn ({β
} Γ
V)) |
55 | 8, 54 | ax-mp 5 |
. . 3
β’ β‘inl Fn ({β
} Γ
V) |
56 | | f1of 5462 |
. . . . . 6
β’
(inl:Vβ1-1-ontoβ({β
} Γ V) β
inl:VβΆ({β
} Γ V)) |
57 | 6, 56 | ax-mp 5 |
. . . . 5
β’
inl:VβΆ({β
} Γ V) |
58 | 57 | a1i 9 |
. . . 4
β’ (π β inl:VβΆ({β
}
Γ V)) |
59 | 58, 44 | ffvelcdmd 5653 |
. . 3
β’ (π β (inlβπ΄) β ({β
} Γ
V)) |
60 | | fvco2 5586 |
. . 3
β’ ((β‘inl Fn ({β
} Γ V) β§
(inlβπ΄) β
({β
} Γ V)) β ((πΉ β β‘inl)β(inlβπ΄)) = (πΉβ(β‘inlβ(inlβπ΄)))) |
61 | 55, 59, 60 | sylancr 414 |
. 2
β’ (π β ((πΉ β β‘inl)β(inlβπ΄)) = (πΉβ(β‘inlβ(inlβπ΄)))) |
62 | | f1ocnvfv1 5778 |
. . . 4
β’
((inl:Vβ1-1-ontoβ({β
} Γ V) β§ π΄ β V) β (β‘inlβ(inlβπ΄)) = π΄) |
63 | 6, 44, 62 | sylancr 414 |
. . 3
β’ (π β (β‘inlβ(inlβπ΄)) = π΄) |
64 | 63 | fveq2d 5520 |
. 2
β’ (π β (πΉβ(β‘inlβ(inlβπ΄))) = (πΉβπ΄)) |
65 | 53, 61, 64 | 3eqtrd 2214 |
1
β’ (π β (case(πΉ, πΊ)β(inlβπ΄)) = (πΉβπ΄)) |