Proof of Theorem caseinl
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-case 7150 | 
. . . 4
⊢
case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | 
| 2 | 1 | fveq1i 5559 | 
. . 3
⊢
(case(𝐹, 𝐺)‘(inl‘𝐴)) = (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inl‘𝐴)) | 
| 3 |   | caseinl.f | 
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐵) | 
| 4 |   | fnfun 5355 | 
. . . . . . 7
⊢ (𝐹 Fn 𝐵 → Fun 𝐹) | 
| 5 | 3, 4 | syl 14 | 
. . . . . 6
⊢ (𝜑 → Fun 𝐹) | 
| 6 |   | djulf1o 7124 | 
. . . . . . . 8
⊢
inl:V–1-1-onto→({∅} × V) | 
| 7 |   | f1ocnv 5517 | 
. . . . . . . 8
⊢
(inl:V–1-1-onto→({∅} × V) → ◡inl:({∅} × V)–1-1-onto→V) | 
| 8 | 6, 7 | ax-mp 5 | 
. . . . . . 7
⊢ ◡inl:({∅} × V)–1-1-onto→V | 
| 9 |   | f1ofun 5506 | 
. . . . . . 7
⊢ (◡inl:({∅} × V)–1-1-onto→V → Fun ◡inl) | 
| 10 | 8, 9 | ax-mp 5 | 
. . . . . 6
⊢ Fun ◡inl | 
| 11 |   | funco 5298 | 
. . . . . 6
⊢ ((Fun
𝐹 ∧ Fun ◡inl) → Fun (𝐹 ∘ ◡inl)) | 
| 12 | 5, 10, 11 | sylancl 413 | 
. . . . 5
⊢ (𝜑 → Fun (𝐹 ∘ ◡inl)) | 
| 13 |   | dmco 5178 | 
. . . . . 6
⊢ dom
(𝐹 ∘ ◡inl) = (◡◡inl
“ dom 𝐹) | 
| 14 |   | df-inl 7113 | 
. . . . . . . . . . 11
⊢ inl =
(𝑥 ∈ V ↦
〈∅, 𝑥〉) | 
| 15 | 14 | funmpt2 5297 | 
. . . . . . . . . 10
⊢ Fun
inl | 
| 16 |   | funrel 5275 | 
. . . . . . . . . 10
⊢ (Fun inl
→ Rel inl) | 
| 17 | 15, 16 | ax-mp 5 | 
. . . . . . . . 9
⊢ Rel
inl | 
| 18 |   | dfrel2 5120 | 
. . . . . . . . 9
⊢ (Rel inl
↔ ◡◡inl = inl) | 
| 19 | 17, 18 | mpbi 145 | 
. . . . . . . 8
⊢ ◡◡inl
= inl | 
| 20 | 19 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → ◡◡inl
= inl) | 
| 21 |   | fndm 5357 | 
. . . . . . . 8
⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) | 
| 22 | 3, 21 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → dom 𝐹 = 𝐵) | 
| 23 | 20, 22 | imaeq12d 5010 | 
. . . . . 6
⊢ (𝜑 → (◡◡inl
“ dom 𝐹) = (inl
“ 𝐵)) | 
| 24 | 13, 23 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → dom (𝐹 ∘ ◡inl) = (inl “ 𝐵)) | 
| 25 |   | df-fn 5261 | 
. . . . 5
⊢ ((𝐹 ∘ ◡inl) Fn (inl “ 𝐵) ↔ (Fun (𝐹 ∘ ◡inl) ∧ dom (𝐹 ∘ ◡inl) = (inl “ 𝐵))) | 
| 26 | 12, 24, 25 | sylanbrc 417 | 
. . . 4
⊢ (𝜑 → (𝐹 ∘ ◡inl) Fn (inl “ 𝐵)) | 
| 27 |   | caseinl.g | 
. . . . . 6
⊢ (𝜑 → Fun 𝐺) | 
| 28 |   | djurf1o 7125 | 
. . . . . . . 8
⊢
inr:V–1-1-onto→({1o} × V) | 
| 29 |   | f1ocnv 5517 | 
. . . . . . . 8
⊢
(inr:V–1-1-onto→({1o} × V) → ◡inr:({1o} × V)–1-1-onto→V) | 
| 30 | 28, 29 | ax-mp 5 | 
. . . . . . 7
⊢ ◡inr:({1o} × V)–1-1-onto→V | 
| 31 |   | f1ofun 5506 | 
. . . . . . 7
⊢ (◡inr:({1o} × V)–1-1-onto→V → Fun ◡inr) | 
| 32 | 30, 31 | ax-mp 5 | 
. . . . . 6
⊢ Fun ◡inr | 
| 33 |   | funco 5298 | 
. . . . . 6
⊢ ((Fun
𝐺 ∧ Fun ◡inr) → Fun (𝐺 ∘ ◡inr)) | 
| 34 | 27, 32, 33 | sylancl 413 | 
. . . . 5
⊢ (𝜑 → Fun (𝐺 ∘ ◡inr)) | 
| 35 |   | dmco 5178 | 
. . . . . . 7
⊢ dom
(𝐺 ∘ ◡inr) = (◡◡inr
“ dom 𝐺) | 
| 36 |   | imacnvcnv 5134 | 
. . . . . . 7
⊢ (◡◡inr
“ dom 𝐺) = (inr
“ dom 𝐺) | 
| 37 | 35, 36 | eqtri 2217 | 
. . . . . 6
⊢ dom
(𝐺 ∘ ◡inr) = (inr “ dom 𝐺) | 
| 38 | 37 | a1i 9 | 
. . . . 5
⊢ (𝜑 → dom (𝐺 ∘ ◡inr) = (inr “ dom 𝐺)) | 
| 39 |   | df-fn 5261 | 
. . . . 5
⊢ ((𝐺 ∘ ◡inr) Fn (inr “ dom 𝐺) ↔ (Fun (𝐺 ∘ ◡inr) ∧ dom (𝐺 ∘ ◡inr) = (inr “ dom 𝐺))) | 
| 40 | 34, 38, 39 | sylanbrc 417 | 
. . . 4
⊢ (𝜑 → (𝐺 ∘ ◡inr) Fn (inr “ dom 𝐺)) | 
| 41 |   | djuin 7130 | 
. . . . 5
⊢ ((inl
“ 𝐵) ∩ (inr
“ dom 𝐺)) =
∅ | 
| 42 | 41 | a1i 9 | 
. . . 4
⊢ (𝜑 → ((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅) | 
| 43 |   | caseinl.a | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 44 | 43 | elexd 2776 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) | 
| 45 |   | f1odm 5508 | 
. . . . . . . 8
⊢
(inl:V–1-1-onto→({∅} × V) → dom inl =
V) | 
| 46 | 6, 45 | ax-mp 5 | 
. . . . . . 7
⊢ dom inl =
V | 
| 47 | 44, 46 | eleqtrrdi 2290 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom inl) | 
| 48 | 47, 15 | jctil 312 | 
. . . . 5
⊢ (𝜑 → (Fun inl ∧ 𝐴 ∈ dom
inl)) | 
| 49 |   | funfvima 5794 | 
. . . . 5
⊢ ((Fun inl
∧ 𝐴 ∈ dom inl)
→ (𝐴 ∈ 𝐵 → (inl‘𝐴) ∈ (inl “ 𝐵))) | 
| 50 | 48, 43, 49 | sylc 62 | 
. . . 4
⊢ (𝜑 → (inl‘𝐴) ∈ (inl “ 𝐵)) | 
| 51 |   | fvun1 5627 | 
. . . 4
⊢ (((𝐹 ∘ ◡inl) Fn (inl “ 𝐵) ∧ (𝐺 ∘ ◡inr) Fn (inr “ dom 𝐺) ∧ (((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅ ∧ (inl‘𝐴) ∈ (inl “ 𝐵))) → (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inl‘𝐴)) = ((𝐹 ∘ ◡inl)‘(inl‘𝐴))) | 
| 52 | 26, 40, 42, 50, 51 | syl112anc 1253 | 
. . 3
⊢ (𝜑 → (((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr))‘(inl‘𝐴)) = ((𝐹 ∘ ◡inl)‘(inl‘𝐴))) | 
| 53 | 2, 52 | eqtrid 2241 | 
. 2
⊢ (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = ((𝐹 ∘ ◡inl)‘(inl‘𝐴))) | 
| 54 |   | f1ofn 5505 | 
. . . 4
⊢ (◡inl:({∅} × V)–1-1-onto→V → ◡inl Fn ({∅} ×
V)) | 
| 55 | 8, 54 | ax-mp 5 | 
. . 3
⊢ ◡inl Fn ({∅} ×
V) | 
| 56 |   | f1of 5504 | 
. . . . . 6
⊢
(inl:V–1-1-onto→({∅} × V) →
inl:V⟶({∅} × V)) | 
| 57 | 6, 56 | ax-mp 5 | 
. . . . 5
⊢
inl:V⟶({∅} × V) | 
| 58 | 57 | a1i 9 | 
. . . 4
⊢ (𝜑 → inl:V⟶({∅}
× V)) | 
| 59 | 58, 44 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (inl‘𝐴) ∈ ({∅} ×
V)) | 
| 60 |   | fvco2 5630 | 
. . 3
⊢ ((◡inl Fn ({∅} × V) ∧
(inl‘𝐴) ∈
({∅} × V)) → ((𝐹 ∘ ◡inl)‘(inl‘𝐴)) = (𝐹‘(◡inl‘(inl‘𝐴)))) | 
| 61 | 55, 59, 60 | sylancr 414 | 
. 2
⊢ (𝜑 → ((𝐹 ∘ ◡inl)‘(inl‘𝐴)) = (𝐹‘(◡inl‘(inl‘𝐴)))) | 
| 62 |   | f1ocnvfv1 5824 | 
. . . 4
⊢
((inl:V–1-1-onto→({∅} × V) ∧ 𝐴 ∈ V) → (◡inl‘(inl‘𝐴)) = 𝐴) | 
| 63 | 6, 44, 62 | sylancr 414 | 
. . 3
⊢ (𝜑 → (◡inl‘(inl‘𝐴)) = 𝐴) | 
| 64 | 63 | fveq2d 5562 | 
. 2
⊢ (𝜑 → (𝐹‘(◡inl‘(inl‘𝐴))) = (𝐹‘𝐴)) | 
| 65 | 53, 61, 64 | 3eqtrd 2233 | 
1
⊢ (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹‘𝐴)) |