ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinl GIF version

Theorem caseinl 7208
Description: Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
Hypotheses
Ref Expression
caseinl.f (𝜑𝐹 Fn 𝐵)
caseinl.g (𝜑 → Fun 𝐺)
caseinl.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinl (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))

Proof of Theorem caseinl
StepHypRef Expression
1 df-case 7201 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5590 . . 3 (case(𝐹, 𝐺)‘(inl‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴))
3 caseinl.f . . . . . . 7 (𝜑𝐹 Fn 𝐵)
4 fnfun 5380 . . . . . . 7 (𝐹 Fn 𝐵 → Fun 𝐹)
53, 4syl 14 . . . . . 6 (𝜑 → Fun 𝐹)
6 djulf1o 7175 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
7 f1ocnv 5547 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
86, 7ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
9 f1ofun 5536 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
108, 9ax-mp 5 . . . . . 6 Fun inl
11 funco 5320 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
125, 10, 11sylancl 413 . . . . 5 (𝜑 → Fun (𝐹inl))
13 dmco 5200 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
14 df-inl 7164 . . . . . . . . . . 11 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1514funmpt2 5319 . . . . . . . . . 10 Fun inl
16 funrel 5297 . . . . . . . . . 10 (Fun inl → Rel inl)
1715, 16ax-mp 5 . . . . . . . . 9 Rel inl
18 dfrel2 5142 . . . . . . . . 9 (Rel inl ↔ inl = inl)
1917, 18mpbi 145 . . . . . . . 8 inl = inl
2019a1i 9 . . . . . . 7 (𝜑inl = inl)
21 fndm 5382 . . . . . . . 8 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
223, 21syl 14 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐵)
2320, 22imaeq12d 5032 . . . . . 6 (𝜑 → (inl “ dom 𝐹) = (inl “ 𝐵))
2413, 23eqtrid 2251 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ 𝐵))
25 df-fn 5283 . . . . 5 ((𝐹inl) Fn (inl “ 𝐵) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ 𝐵)))
2612, 24, 25sylanbrc 417 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ 𝐵))
27 caseinl.g . . . . . 6 (𝜑 → Fun 𝐺)
28 djurf1o 7176 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
29 f1ocnv 5547 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
3028, 29ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
31 f1ofun 5536 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
3230, 31ax-mp 5 . . . . . 6 Fun inr
33 funco 5320 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
3427, 32, 33sylancl 413 . . . . 5 (𝜑 → Fun (𝐺inr))
35 dmco 5200 . . . . . . 7 dom (𝐺inr) = (inr “ dom 𝐺)
36 imacnvcnv 5156 . . . . . . 7 (inr “ dom 𝐺) = (inr “ dom 𝐺)
3735, 36eqtri 2227 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
3837a1i 9 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ dom 𝐺))
39 df-fn 5283 . . . . 5 ((𝐺inr) Fn (inr “ dom 𝐺) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ dom 𝐺)))
4034, 38, 39sylanbrc 417 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ dom 𝐺))
41 djuin 7181 . . . . 5 ((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅)
43 caseinl.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2787 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5538 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
466, 45ax-mp 5 . . . . . . 7 dom inl = V
4744, 46eleqtrrdi 2300 . . . . . 6 (𝜑𝐴 ∈ dom inl)
4847, 15jctil 312 . . . . 5 (𝜑 → (Fun inl ∧ 𝐴 ∈ dom inl))
49 funfvima 5829 . . . . 5 ((Fun inl ∧ 𝐴 ∈ dom inl) → (𝐴𝐵 → (inl‘𝐴) ∈ (inl “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inl‘𝐴) ∈ (inl “ 𝐵))
51 fvun1 5658 . . . 4 (((𝐹inl) Fn (inl “ 𝐵) ∧ (𝐺inr) Fn (inr “ dom 𝐺) ∧ (((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅ ∧ (inl‘𝐴) ∈ (inl “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
5226, 40, 42, 50, 51syl112anc 1254 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
532, 52eqtrid 2251 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
54 f1ofn 5535 . . . 4 (inl:({∅} × V)–1-1-onto→V → inl Fn ({∅} × V))
558, 54ax-mp 5 . . 3 inl Fn ({∅} × V)
56 f1of 5534 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
576, 56ax-mp 5 . . . . 5 inl:V⟶({∅} × V)
5857a1i 9 . . . 4 (𝜑 → inl:V⟶({∅} × V))
5958, 44ffvelcdmd 5729 . . 3 (𝜑 → (inl‘𝐴) ∈ ({∅} × V))
60 fvco2 5661 . . 3 ((inl Fn ({∅} × V) ∧ (inl‘𝐴) ∈ ({∅} × V)) → ((𝐹inl)‘(inl‘𝐴)) = (𝐹‘(inl‘(inl‘𝐴))))
6155, 59, 60sylancr 414 . 2 (𝜑 → ((𝐹inl)‘(inl‘𝐴)) = (𝐹‘(inl‘(inl‘𝐴))))
62 f1ocnvfv1 5859 . . . 4 ((inl:V–1-1-onto→({∅} × V) ∧ 𝐴 ∈ V) → (inl‘(inl‘𝐴)) = 𝐴)
636, 44, 62sylancr 414 . . 3 (𝜑 → (inl‘(inl‘𝐴)) = 𝐴)
6463fveq2d 5593 . 2 (𝜑 → (𝐹‘(inl‘(inl‘𝐴))) = (𝐹𝐴))
6553, 61, 643eqtrd 2243 1 (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cun 3168  cin 3169  c0 3464  {csn 3638  cop 3641   × cxp 4681  ccnv 4682  dom cdm 4683  cima 4686  ccom 4687  Rel wrel 4688  Fun wfun 5274   Fn wfn 5275  wf 5276  1-1-ontowf1o 5279  cfv 5280  1oc1o 6508  inlcinl 7162  inrcinr 7163  casecdjucase 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240  df-1o 6515  df-inl 7164  df-inr 7165  df-case 7201
This theorem is referenced by:  omp1eomlem  7211  ctm  7226
  Copyright terms: Public domain W3C validator