ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinl GIF version

Theorem caseinl 7068
Description: Applying the "case" construction to a left injection. (Contributed by Jim Kingdon, 15-Mar-2023.)
Hypotheses
Ref Expression
caseinl.f (𝜑𝐹 Fn 𝐵)
caseinl.g (𝜑 → Fun 𝐺)
caseinl.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinl (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))

Proof of Theorem caseinl
StepHypRef Expression
1 df-case 7061 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5497 . . 3 (case(𝐹, 𝐺)‘(inl‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴))
3 caseinl.f . . . . . . 7 (𝜑𝐹 Fn 𝐵)
4 fnfun 5295 . . . . . . 7 (𝐹 Fn 𝐵 → Fun 𝐹)
53, 4syl 14 . . . . . 6 (𝜑 → Fun 𝐹)
6 djulf1o 7035 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
7 f1ocnv 5455 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
86, 7ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
9 f1ofun 5444 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
108, 9ax-mp 5 . . . . . 6 Fun inl
11 funco 5238 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
125, 10, 11sylancl 411 . . . . 5 (𝜑 → Fun (𝐹inl))
13 dmco 5119 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
14 df-inl 7024 . . . . . . . . . . 11 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
1514funmpt2 5237 . . . . . . . . . 10 Fun inl
16 funrel 5215 . . . . . . . . . 10 (Fun inl → Rel inl)
1715, 16ax-mp 5 . . . . . . . . 9 Rel inl
18 dfrel2 5061 . . . . . . . . 9 (Rel inl ↔ inl = inl)
1917, 18mpbi 144 . . . . . . . 8 inl = inl
2019a1i 9 . . . . . . 7 (𝜑inl = inl)
21 fndm 5297 . . . . . . . 8 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
223, 21syl 14 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐵)
2320, 22imaeq12d 4954 . . . . . 6 (𝜑 → (inl “ dom 𝐹) = (inl “ 𝐵))
2413, 23eqtrid 2215 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ 𝐵))
25 df-fn 5201 . . . . 5 ((𝐹inl) Fn (inl “ 𝐵) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ 𝐵)))
2612, 24, 25sylanbrc 415 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ 𝐵))
27 caseinl.g . . . . . 6 (𝜑 → Fun 𝐺)
28 djurf1o 7036 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
29 f1ocnv 5455 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
3028, 29ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
31 f1ofun 5444 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
3230, 31ax-mp 5 . . . . . 6 Fun inr
33 funco 5238 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
3427, 32, 33sylancl 411 . . . . 5 (𝜑 → Fun (𝐺inr))
35 dmco 5119 . . . . . . 7 dom (𝐺inr) = (inr “ dom 𝐺)
36 imacnvcnv 5075 . . . . . . 7 (inr “ dom 𝐺) = (inr “ dom 𝐺)
3735, 36eqtri 2191 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
3837a1i 9 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ dom 𝐺))
39 df-fn 5201 . . . . 5 ((𝐺inr) Fn (inr “ dom 𝐺) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ dom 𝐺)))
4034, 38, 39sylanbrc 415 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ dom 𝐺))
41 djuin 7041 . . . . 5 ((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅)
43 caseinl.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2743 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5446 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
466, 45ax-mp 5 . . . . . . 7 dom inl = V
4744, 46eleqtrrdi 2264 . . . . . 6 (𝜑𝐴 ∈ dom inl)
4847, 15jctil 310 . . . . 5 (𝜑 → (Fun inl ∧ 𝐴 ∈ dom inl))
49 funfvima 5727 . . . . 5 ((Fun inl ∧ 𝐴 ∈ dom inl) → (𝐴𝐵 → (inl‘𝐴) ∈ (inl “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inl‘𝐴) ∈ (inl “ 𝐵))
51 fvun1 5562 . . . 4 (((𝐹inl) Fn (inl “ 𝐵) ∧ (𝐺inr) Fn (inr “ dom 𝐺) ∧ (((inl “ 𝐵) ∩ (inr “ dom 𝐺)) = ∅ ∧ (inl‘𝐴) ∈ (inl “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
5226, 40, 42, 50, 51syl112anc 1237 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
532, 52eqtrid 2215 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = ((𝐹inl)‘(inl‘𝐴)))
54 f1ofn 5443 . . . 4 (inl:({∅} × V)–1-1-onto→V → inl Fn ({∅} × V))
558, 54ax-mp 5 . . 3 inl Fn ({∅} × V)
56 f1of 5442 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
576, 56ax-mp 5 . . . . 5 inl:V⟶({∅} × V)
5857a1i 9 . . . 4 (𝜑 → inl:V⟶({∅} × V))
5958, 44ffvelrnd 5632 . . 3 (𝜑 → (inl‘𝐴) ∈ ({∅} × V))
60 fvco2 5565 . . 3 ((inl Fn ({∅} × V) ∧ (inl‘𝐴) ∈ ({∅} × V)) → ((𝐹inl)‘(inl‘𝐴)) = (𝐹‘(inl‘(inl‘𝐴))))
6155, 59, 60sylancr 412 . 2 (𝜑 → ((𝐹inl)‘(inl‘𝐴)) = (𝐹‘(inl‘(inl‘𝐴))))
62 f1ocnvfv1 5756 . . . 4 ((inl:V–1-1-onto→({∅} × V) ∧ 𝐴 ∈ V) → (inl‘(inl‘𝐴)) = 𝐴)
636, 44, 62sylancr 412 . . 3 (𝜑 → (inl‘(inl‘𝐴)) = 𝐴)
6463fveq2d 5500 . 2 (𝜑 → (𝐹‘(inl‘(inl‘𝐴))) = (𝐹𝐴))
6553, 61, 643eqtrd 2207 1 (𝜑 → (case(𝐹, 𝐺)‘(inl‘𝐴)) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  cin 3120  c0 3414  {csn 3583  cop 3586   × cxp 4609  ccnv 4610  dom cdm 4611  cima 4614  ccom 4615  Rel wrel 4616  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1-ontowf1o 5197  cfv 5198  1oc1o 6388  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  omp1eomlem  7071  ctm  7086
  Copyright terms: Public domain W3C validator