Step | Hyp | Ref
| Expression |
1 | | casefun.f |
. . . 4
ā¢ (š ā Fun š¹) |
2 | | djulf1o 7056 |
. . . . . 6
ā¢
inl:Vā1-1-ontoā({ā
} Ć V) |
3 | | f1of1 5460 |
. . . . . 6
ā¢
(inl:Vā1-1-ontoā({ā
} Ć V) ā inl:Vā1-1ā({ā
} Ć V)) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
ā¢
inl:Vā1-1ā({ā
}
Ć V) |
5 | | df-f1 5221 |
. . . . . 6
ā¢
(inl:Vā1-1ā({ā
}
Ć V) ā (inl:Vā¶({ā
} Ć V) ā§ Fun ā”inl)) |
6 | 5 | simprbi 275 |
. . . . 5
ā¢
(inl:Vā1-1ā({ā
}
Ć V) ā Fun ā”inl) |
7 | 4, 6 | mp1i 10 |
. . . 4
ā¢ (š ā Fun ā”inl) |
8 | | funco 5256 |
. . . 4
ā¢ ((Fun
š¹ ā§ Fun ā”inl) ā Fun (š¹ ā ā”inl)) |
9 | 1, 7, 8 | syl2anc 411 |
. . 3
ā¢ (š ā Fun (š¹ ā ā”inl)) |
10 | | casefun.g |
. . . 4
ā¢ (š ā Fun šŗ) |
11 | | djurf1o 7057 |
. . . . . 6
ā¢
inr:Vā1-1-ontoā({1o} Ć V) |
12 | | f1of1 5460 |
. . . . . 6
ā¢
(inr:Vā1-1-ontoā({1o} Ć V) ā
inr:Vā1-1ā({1o}
Ć V)) |
13 | 11, 12 | ax-mp 5 |
. . . . 5
ā¢
inr:Vā1-1ā({1o} Ć V) |
14 | | df-f1 5221 |
. . . . . 6
ā¢
(inr:Vā1-1ā({1o} Ć V) ā
(inr:Vā¶({1o} Ć V) ā§ Fun ā”inr)) |
15 | 14 | simprbi 275 |
. . . . 5
ā¢
(inr:Vā1-1ā({1o} Ć V) ā Fun ā”inr) |
16 | 13, 15 | mp1i 10 |
. . . 4
ā¢ (š ā Fun ā”inr) |
17 | | funco 5256 |
. . . 4
ā¢ ((Fun
šŗ ā§ Fun ā”inr) ā Fun (šŗ ā ā”inr)) |
18 | 10, 16, 17 | syl2anc 411 |
. . 3
ā¢ (š ā Fun (šŗ ā ā”inr)) |
19 | | dmcoss 4896 |
. . . . . . 7
ā¢ dom
(š¹ ā ā”inl) ā dom ā”inl |
20 | | df-rn 4637 |
. . . . . . 7
ā¢ ran inl =
dom ā”inl |
21 | 19, 20 | sseqtrri 3190 |
. . . . . 6
ā¢ dom
(š¹ ā ā”inl) ā ran inl |
22 | | dmcoss 4896 |
. . . . . . 7
ā¢ dom
(šŗ ā ā”inr) ā dom ā”inr |
23 | | df-rn 4637 |
. . . . . . 7
ā¢ ran inr =
dom ā”inr |
24 | 22, 23 | sseqtrri 3190 |
. . . . . 6
ā¢ dom
(šŗ ā ā”inr) ā ran inr |
25 | | ss2in 3363 |
. . . . . 6
ā¢ ((dom
(š¹ ā ā”inl) ā ran inl ā§ dom (šŗ ā ā”inr) ā ran inr) ā (dom (š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) ā (ran inl ā© ran
inr)) |
26 | 21, 24, 25 | mp2an 426 |
. . . . 5
ā¢ (dom
(š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) ā (ran inl ā© ran
inr) |
27 | | rnresv 5088 |
. . . . . . . . 9
ā¢ ran (inl
ā¾ V) = ran inl |
28 | 27 | eqcomi 2181 |
. . . . . . . 8
ā¢ ran inl =
ran (inl ā¾ V) |
29 | | rnresv 5088 |
. . . . . . . . 9
ā¢ ran (inr
ā¾ V) = ran inr |
30 | 29 | eqcomi 2181 |
. . . . . . . 8
ā¢ ran inr =
ran (inr ā¾ V) |
31 | 28, 30 | ineq12i 3334 |
. . . . . . 7
ā¢ (ran inl
ā© ran inr) = (ran (inl ā¾ V) ā© ran (inr ā¾
V)) |
32 | | djuinr 7061 |
. . . . . . 7
ā¢ (ran (inl
ā¾ V) ā© ran (inr ā¾ V)) = ā
|
33 | 31, 32 | eqtri 2198 |
. . . . . 6
ā¢ (ran inl
ā© ran inr) = ā
|
34 | 33 | a1i 9 |
. . . . 5
ā¢ (š ā (ran inl ā© ran inr) =
ā
) |
35 | 26, 34 | sseqtrid 3205 |
. . . 4
ā¢ (š ā (dom (š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) ā ā
) |
36 | | ss0 3463 |
. . . 4
ā¢ ((dom
(š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) ā ā
ā (dom (š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) = ā
) |
37 | 35, 36 | syl 14 |
. . 3
ā¢ (š ā (dom (š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) = ā
) |
38 | | funun 5260 |
. . 3
ā¢ (((Fun
(š¹ ā ā”inl) ā§ Fun (šŗ ā ā”inr)) ā§ (dom (š¹ ā ā”inl) ā© dom (šŗ ā ā”inr)) = ā
) ā Fun ((š¹ ā ā”inl) āŖ (šŗ ā ā”inr))) |
39 | 9, 18, 37, 38 | syl21anc 1237 |
. 2
ā¢ (š ā Fun ((š¹ ā ā”inl) āŖ (šŗ ā ā”inr))) |
40 | | df-case 7082 |
. . 3
ā¢
case(š¹, šŗ) = ((š¹ ā ā”inl) āŖ (šŗ ā ā”inr)) |
41 | 40 | funeqi 5237 |
. 2
ā¢ (Fun
case(š¹, šŗ) ā Fun ((š¹ ā ā”inl) āŖ (šŗ ā ā”inr))) |
42 | 39, 41 | sylibr 134 |
1
ā¢ (š ā Fun case(š¹, šŗ)) |