ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 7086
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (𝜑 → Fun 𝐹)
casefun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
casefun (𝜑 → Fun case(𝐹, 𝐺))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (𝜑 → Fun 𝐹)
2 djulf1o 7059 . . . . . 6 inl:V–1-1-onto→({∅} × V)
3 f1of1 5462 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
42, 3ax-mp 5 . . . . 5 inl:V–1-1→({∅} × V)
5 df-f1 5223 . . . . . 6 (inl:V–1-1→({∅} × V) ↔ (inl:V⟶({∅} × V) ∧ Fun inl))
65simprbi 275 . . . . 5 (inl:V–1-1→({∅} × V) → Fun inl)
74, 6mp1i 10 . . . 4 (𝜑 → Fun inl)
8 funco 5258 . . . 4 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
91, 7, 8syl2anc 411 . . 3 (𝜑 → Fun (𝐹inl))
10 casefun.g . . . 4 (𝜑 → Fun 𝐺)
11 djurf1o 7060 . . . . . 6 inr:V–1-1-onto→({1o} × V)
12 f1of1 5462 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1311, 12ax-mp 5 . . . . 5 inr:V–1-1→({1o} × V)
14 df-f1 5223 . . . . . 6 (inr:V–1-1→({1o} × V) ↔ (inr:V⟶({1o} × V) ∧ Fun inr))
1514simprbi 275 . . . . 5 (inr:V–1-1→({1o} × V) → Fun inr)
1613, 15mp1i 10 . . . 4 (𝜑 → Fun inr)
17 funco 5258 . . . 4 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
1810, 16, 17syl2anc 411 . . 3 (𝜑 → Fun (𝐺inr))
19 dmcoss 4898 . . . . . . 7 dom (𝐹inl) ⊆ dom inl
20 df-rn 4639 . . . . . . 7 ran inl = dom inl
2119, 20sseqtrri 3192 . . . . . 6 dom (𝐹inl) ⊆ ran inl
22 dmcoss 4898 . . . . . . 7 dom (𝐺inr) ⊆ dom inr
23 df-rn 4639 . . . . . . 7 ran inr = dom inr
2422, 23sseqtrri 3192 . . . . . 6 dom (𝐺inr) ⊆ ran inr
25 ss2in 3365 . . . . . 6 ((dom (𝐹inl) ⊆ ran inl ∧ dom (𝐺inr) ⊆ ran inr) → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr))
2621, 24, 25mp2an 426 . . . . 5 (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr)
27 rnresv 5090 . . . . . . . . 9 ran (inl ↾ V) = ran inl
2827eqcomi 2181 . . . . . . . 8 ran inl = ran (inl ↾ V)
29 rnresv 5090 . . . . . . . . 9 ran (inr ↾ V) = ran inr
3029eqcomi 2181 . . . . . . . 8 ran inr = ran (inr ↾ V)
3128, 30ineq12i 3336 . . . . . . 7 (ran inl ∩ ran inr) = (ran (inl ↾ V) ∩ ran (inr ↾ V))
32 djuinr 7064 . . . . . . 7 (ran (inl ↾ V) ∩ ran (inr ↾ V)) = ∅
3331, 32eqtri 2198 . . . . . 6 (ran inl ∩ ran inr) = ∅
3433a1i 9 . . . . 5 (𝜑 → (ran inl ∩ ran inr) = ∅)
3526, 34sseqtrid 3207 . . . 4 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅)
36 ss0 3465 . . . 4 ((dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅ → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
3735, 36syl 14 . . 3 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
38 funun 5262 . . 3 (((Fun (𝐹inl) ∧ Fun (𝐺inr)) ∧ (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅) → Fun ((𝐹inl) ∪ (𝐺inr)))
399, 18, 37, 38syl21anc 1237 . 2 (𝜑 → Fun ((𝐹inl) ∪ (𝐺inr)))
40 df-case 7085 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
4140funeqi 5239 . 2 (Fun case(𝐹, 𝐺) ↔ Fun ((𝐹inl) ∪ (𝐺inr)))
4239, 41sylibr 134 1 (𝜑 → Fun case(𝐹, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Vcvv 2739  cun 3129  cin 3130  wss 3131  c0 3424  {csn 3594   × cxp 4626  ccnv 4627  dom cdm 4628  ran crn 4629  cres 4630  ccom 4632  Fun wfun 5212  wf 5214  1-1wf1 5215  1-1-ontowf1o 5217  1oc1o 6412  inlcinl 7046  inrcinr 7047  casecdjucase 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-inl 7048  df-inr 7049  df-case 7085
This theorem is referenced by:  casef  7089
  Copyright terms: Public domain W3C validator