ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 7187
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (𝜑 → Fun 𝐹)
casefun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
casefun (𝜑 → Fun case(𝐹, 𝐺))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (𝜑 → Fun 𝐹)
2 djulf1o 7160 . . . . . 6 inl:V–1-1-onto→({∅} × V)
3 f1of1 5521 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
42, 3ax-mp 5 . . . . 5 inl:V–1-1→({∅} × V)
5 df-f1 5276 . . . . . 6 (inl:V–1-1→({∅} × V) ↔ (inl:V⟶({∅} × V) ∧ Fun inl))
65simprbi 275 . . . . 5 (inl:V–1-1→({∅} × V) → Fun inl)
74, 6mp1i 10 . . . 4 (𝜑 → Fun inl)
8 funco 5311 . . . 4 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
91, 7, 8syl2anc 411 . . 3 (𝜑 → Fun (𝐹inl))
10 casefun.g . . . 4 (𝜑 → Fun 𝐺)
11 djurf1o 7161 . . . . . 6 inr:V–1-1-onto→({1o} × V)
12 f1of1 5521 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1311, 12ax-mp 5 . . . . 5 inr:V–1-1→({1o} × V)
14 df-f1 5276 . . . . . 6 (inr:V–1-1→({1o} × V) ↔ (inr:V⟶({1o} × V) ∧ Fun inr))
1514simprbi 275 . . . . 5 (inr:V–1-1→({1o} × V) → Fun inr)
1613, 15mp1i 10 . . . 4 (𝜑 → Fun inr)
17 funco 5311 . . . 4 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
1810, 16, 17syl2anc 411 . . 3 (𝜑 → Fun (𝐺inr))
19 dmcoss 4948 . . . . . . 7 dom (𝐹inl) ⊆ dom inl
20 df-rn 4686 . . . . . . 7 ran inl = dom inl
2119, 20sseqtrri 3228 . . . . . 6 dom (𝐹inl) ⊆ ran inl
22 dmcoss 4948 . . . . . . 7 dom (𝐺inr) ⊆ dom inr
23 df-rn 4686 . . . . . . 7 ran inr = dom inr
2422, 23sseqtrri 3228 . . . . . 6 dom (𝐺inr) ⊆ ran inr
25 ss2in 3401 . . . . . 6 ((dom (𝐹inl) ⊆ ran inl ∧ dom (𝐺inr) ⊆ ran inr) → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr))
2621, 24, 25mp2an 426 . . . . 5 (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr)
27 rnresv 5142 . . . . . . . . 9 ran (inl ↾ V) = ran inl
2827eqcomi 2209 . . . . . . . 8 ran inl = ran (inl ↾ V)
29 rnresv 5142 . . . . . . . . 9 ran (inr ↾ V) = ran inr
3029eqcomi 2209 . . . . . . . 8 ran inr = ran (inr ↾ V)
3128, 30ineq12i 3372 . . . . . . 7 (ran inl ∩ ran inr) = (ran (inl ↾ V) ∩ ran (inr ↾ V))
32 djuinr 7165 . . . . . . 7 (ran (inl ↾ V) ∩ ran (inr ↾ V)) = ∅
3331, 32eqtri 2226 . . . . . 6 (ran inl ∩ ran inr) = ∅
3433a1i 9 . . . . 5 (𝜑 → (ran inl ∩ ran inr) = ∅)
3526, 34sseqtrid 3243 . . . 4 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅)
36 ss0 3501 . . . 4 ((dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅ → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
3735, 36syl 14 . . 3 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
38 funun 5315 . . 3 (((Fun (𝐹inl) ∧ Fun (𝐺inr)) ∧ (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅) → Fun ((𝐹inl) ∪ (𝐺inr)))
399, 18, 37, 38syl21anc 1249 . 2 (𝜑 → Fun ((𝐹inl) ∪ (𝐺inr)))
40 df-case 7186 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
4140funeqi 5292 . 2 (Fun case(𝐹, 𝐺) ↔ Fun ((𝐹inl) ∪ (𝐺inr)))
4239, 41sylibr 134 1 (𝜑 → Fun case(𝐹, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  Vcvv 2772  cun 3164  cin 3165  wss 3166  c0 3460  {csn 3633   × cxp 4673  ccnv 4674  dom cdm 4675  ran crn 4676  cres 4677  ccom 4679  Fun wfun 5265  wf 5267  1-1wf1 5268  1-1-ontowf1o 5270  1oc1o 6495  inlcinl 7147  inrcinr 7148  casecdjucase 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-inl 7149  df-inr 7150  df-case 7186
This theorem is referenced by:  casef  7190
  Copyright terms: Public domain W3C validator