ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 7083
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (šœ‘ ā†’ Fun š¹)
casefun.g (šœ‘ ā†’ Fun šŗ)
Assertion
Ref Expression
casefun (šœ‘ ā†’ Fun case(š¹, šŗ))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (šœ‘ ā†’ Fun š¹)
2 djulf1o 7056 . . . . . 6 inl:Vā€“1-1-ontoā†’({āˆ…} Ɨ V)
3 f1of1 5460 . . . . . 6 (inl:Vā€“1-1-ontoā†’({āˆ…} Ɨ V) ā†’ inl:Vā€“1-1ā†’({āˆ…} Ɨ V))
42, 3ax-mp 5 . . . . 5 inl:Vā€“1-1ā†’({āˆ…} Ɨ V)
5 df-f1 5221 . . . . . 6 (inl:Vā€“1-1ā†’({āˆ…} Ɨ V) ā†” (inl:VāŸ¶({āˆ…} Ɨ V) āˆ§ Fun ā—”inl))
65simprbi 275 . . . . 5 (inl:Vā€“1-1ā†’({āˆ…} Ɨ V) ā†’ Fun ā—”inl)
74, 6mp1i 10 . . . 4 (šœ‘ ā†’ Fun ā—”inl)
8 funco 5256 . . . 4 ((Fun š¹ āˆ§ Fun ā—”inl) ā†’ Fun (š¹ āˆ˜ ā—”inl))
91, 7, 8syl2anc 411 . . 3 (šœ‘ ā†’ Fun (š¹ āˆ˜ ā—”inl))
10 casefun.g . . . 4 (šœ‘ ā†’ Fun šŗ)
11 djurf1o 7057 . . . . . 6 inr:Vā€“1-1-ontoā†’({1o} Ɨ V)
12 f1of1 5460 . . . . . 6 (inr:Vā€“1-1-ontoā†’({1o} Ɨ V) ā†’ inr:Vā€“1-1ā†’({1o} Ɨ V))
1311, 12ax-mp 5 . . . . 5 inr:Vā€“1-1ā†’({1o} Ɨ V)
14 df-f1 5221 . . . . . 6 (inr:Vā€“1-1ā†’({1o} Ɨ V) ā†” (inr:VāŸ¶({1o} Ɨ V) āˆ§ Fun ā—”inr))
1514simprbi 275 . . . . 5 (inr:Vā€“1-1ā†’({1o} Ɨ V) ā†’ Fun ā—”inr)
1613, 15mp1i 10 . . . 4 (šœ‘ ā†’ Fun ā—”inr)
17 funco 5256 . . . 4 ((Fun šŗ āˆ§ Fun ā—”inr) ā†’ Fun (šŗ āˆ˜ ā—”inr))
1810, 16, 17syl2anc 411 . . 3 (šœ‘ ā†’ Fun (šŗ āˆ˜ ā—”inr))
19 dmcoss 4896 . . . . . . 7 dom (š¹ āˆ˜ ā—”inl) āŠ† dom ā—”inl
20 df-rn 4637 . . . . . . 7 ran inl = dom ā—”inl
2119, 20sseqtrri 3190 . . . . . 6 dom (š¹ āˆ˜ ā—”inl) āŠ† ran inl
22 dmcoss 4896 . . . . . . 7 dom (šŗ āˆ˜ ā—”inr) āŠ† dom ā—”inr
23 df-rn 4637 . . . . . . 7 ran inr = dom ā—”inr
2422, 23sseqtrri 3190 . . . . . 6 dom (šŗ āˆ˜ ā—”inr) āŠ† ran inr
25 ss2in 3363 . . . . . 6 ((dom (š¹ āˆ˜ ā—”inl) āŠ† ran inl āˆ§ dom (šŗ āˆ˜ ā—”inr) āŠ† ran inr) ā†’ (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) āŠ† (ran inl āˆ© ran inr))
2621, 24, 25mp2an 426 . . . . 5 (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) āŠ† (ran inl āˆ© ran inr)
27 rnresv 5088 . . . . . . . . 9 ran (inl ā†¾ V) = ran inl
2827eqcomi 2181 . . . . . . . 8 ran inl = ran (inl ā†¾ V)
29 rnresv 5088 . . . . . . . . 9 ran (inr ā†¾ V) = ran inr
3029eqcomi 2181 . . . . . . . 8 ran inr = ran (inr ā†¾ V)
3128, 30ineq12i 3334 . . . . . . 7 (ran inl āˆ© ran inr) = (ran (inl ā†¾ V) āˆ© ran (inr ā†¾ V))
32 djuinr 7061 . . . . . . 7 (ran (inl ā†¾ V) āˆ© ran (inr ā†¾ V)) = āˆ…
3331, 32eqtri 2198 . . . . . 6 (ran inl āˆ© ran inr) = āˆ…
3433a1i 9 . . . . 5 (šœ‘ ā†’ (ran inl āˆ© ran inr) = āˆ…)
3526, 34sseqtrid 3205 . . . 4 (šœ‘ ā†’ (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) āŠ† āˆ…)
36 ss0 3463 . . . 4 ((dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) āŠ† āˆ… ā†’ (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) = āˆ…)
3735, 36syl 14 . . 3 (šœ‘ ā†’ (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) = āˆ…)
38 funun 5260 . . 3 (((Fun (š¹ āˆ˜ ā—”inl) āˆ§ Fun (šŗ āˆ˜ ā—”inr)) āˆ§ (dom (š¹ āˆ˜ ā—”inl) āˆ© dom (šŗ āˆ˜ ā—”inr)) = āˆ…) ā†’ Fun ((š¹ āˆ˜ ā—”inl) āˆŖ (šŗ āˆ˜ ā—”inr)))
399, 18, 37, 38syl21anc 1237 . 2 (šœ‘ ā†’ Fun ((š¹ āˆ˜ ā—”inl) āˆŖ (šŗ āˆ˜ ā—”inr)))
40 df-case 7082 . . 3 case(š¹, šŗ) = ((š¹ āˆ˜ ā—”inl) āˆŖ (šŗ āˆ˜ ā—”inr))
4140funeqi 5237 . 2 (Fun case(š¹, šŗ) ā†” Fun ((š¹ āˆ˜ ā—”inl) āˆŖ (šŗ āˆ˜ ā—”inr)))
4239, 41sylibr 134 1 (šœ‘ ā†’ Fun case(š¹, šŗ))
Colors of variables: wff set class
Syntax hints:   ā†’ wi 4   = wceq 1353  Vcvv 2737   āˆŖ cun 3127   āˆ© cin 3128   āŠ† wss 3129  āˆ…c0 3422  {csn 3592   Ɨ cxp 4624  ā—”ccnv 4625  dom cdm 4626  ran crn 4627   ā†¾ cres 4628   āˆ˜ ccom 4630  Fun wfun 5210  āŸ¶wf 5212  ā€“1-1ā†’wf1 5213  ā€“1-1-ontoā†’wf1o 5215  1oc1o 6409  inlcinl 7043  inrcinr 7044  casecdjucase 7081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1st 6140  df-2nd 6141  df-1o 6416  df-inl 7045  df-inr 7046  df-case 7082
This theorem is referenced by:  casef  7086
  Copyright terms: Public domain W3C validator