ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 7144
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (𝜑 → Fun 𝐹)
casefun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
casefun (𝜑 → Fun case(𝐹, 𝐺))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (𝜑 → Fun 𝐹)
2 djulf1o 7117 . . . . . 6 inl:V–1-1-onto→({∅} × V)
3 f1of1 5499 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
42, 3ax-mp 5 . . . . 5 inl:V–1-1→({∅} × V)
5 df-f1 5259 . . . . . 6 (inl:V–1-1→({∅} × V) ↔ (inl:V⟶({∅} × V) ∧ Fun inl))
65simprbi 275 . . . . 5 (inl:V–1-1→({∅} × V) → Fun inl)
74, 6mp1i 10 . . . 4 (𝜑 → Fun inl)
8 funco 5294 . . . 4 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
91, 7, 8syl2anc 411 . . 3 (𝜑 → Fun (𝐹inl))
10 casefun.g . . . 4 (𝜑 → Fun 𝐺)
11 djurf1o 7118 . . . . . 6 inr:V–1-1-onto→({1o} × V)
12 f1of1 5499 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1311, 12ax-mp 5 . . . . 5 inr:V–1-1→({1o} × V)
14 df-f1 5259 . . . . . 6 (inr:V–1-1→({1o} × V) ↔ (inr:V⟶({1o} × V) ∧ Fun inr))
1514simprbi 275 . . . . 5 (inr:V–1-1→({1o} × V) → Fun inr)
1613, 15mp1i 10 . . . 4 (𝜑 → Fun inr)
17 funco 5294 . . . 4 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
1810, 16, 17syl2anc 411 . . 3 (𝜑 → Fun (𝐺inr))
19 dmcoss 4931 . . . . . . 7 dom (𝐹inl) ⊆ dom inl
20 df-rn 4670 . . . . . . 7 ran inl = dom inl
2119, 20sseqtrri 3214 . . . . . 6 dom (𝐹inl) ⊆ ran inl
22 dmcoss 4931 . . . . . . 7 dom (𝐺inr) ⊆ dom inr
23 df-rn 4670 . . . . . . 7 ran inr = dom inr
2422, 23sseqtrri 3214 . . . . . 6 dom (𝐺inr) ⊆ ran inr
25 ss2in 3387 . . . . . 6 ((dom (𝐹inl) ⊆ ran inl ∧ dom (𝐺inr) ⊆ ran inr) → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr))
2621, 24, 25mp2an 426 . . . . 5 (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr)
27 rnresv 5125 . . . . . . . . 9 ran (inl ↾ V) = ran inl
2827eqcomi 2197 . . . . . . . 8 ran inl = ran (inl ↾ V)
29 rnresv 5125 . . . . . . . . 9 ran (inr ↾ V) = ran inr
3029eqcomi 2197 . . . . . . . 8 ran inr = ran (inr ↾ V)
3128, 30ineq12i 3358 . . . . . . 7 (ran inl ∩ ran inr) = (ran (inl ↾ V) ∩ ran (inr ↾ V))
32 djuinr 7122 . . . . . . 7 (ran (inl ↾ V) ∩ ran (inr ↾ V)) = ∅
3331, 32eqtri 2214 . . . . . 6 (ran inl ∩ ran inr) = ∅
3433a1i 9 . . . . 5 (𝜑 → (ran inl ∩ ran inr) = ∅)
3526, 34sseqtrid 3229 . . . 4 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅)
36 ss0 3487 . . . 4 ((dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅ → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
3735, 36syl 14 . . 3 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
38 funun 5298 . . 3 (((Fun (𝐹inl) ∧ Fun (𝐺inr)) ∧ (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅) → Fun ((𝐹inl) ∪ (𝐺inr)))
399, 18, 37, 38syl21anc 1248 . 2 (𝜑 → Fun ((𝐹inl) ∪ (𝐺inr)))
40 df-case 7143 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
4140funeqi 5275 . 2 (Fun case(𝐹, 𝐺) ↔ Fun ((𝐹inl) ∪ (𝐺inr)))
4239, 41sylibr 134 1 (𝜑 → Fun case(𝐹, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  ccom 4663  Fun wfun 5248  wf 5250  1-1wf1 5251  1-1-ontowf1o 5253  1oc1o 6462  inlcinl 7104  inrcinr 7105  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  casef  7147
  Copyright terms: Public domain W3C validator