ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 6978
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (𝜑 → Fun 𝐹)
casefun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
casefun (𝜑 → Fun case(𝐹, 𝐺))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (𝜑 → Fun 𝐹)
2 djulf1o 6951 . . . . . 6 inl:V–1-1-onto→({∅} × V)
3 f1of1 5374 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
42, 3ax-mp 5 . . . . 5 inl:V–1-1→({∅} × V)
5 df-f1 5136 . . . . . 6 (inl:V–1-1→({∅} × V) ↔ (inl:V⟶({∅} × V) ∧ Fun inl))
65simprbi 273 . . . . 5 (inl:V–1-1→({∅} × V) → Fun inl)
74, 6mp1i 10 . . . 4 (𝜑 → Fun inl)
8 funco 5171 . . . 4 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
91, 7, 8syl2anc 409 . . 3 (𝜑 → Fun (𝐹inl))
10 casefun.g . . . 4 (𝜑 → Fun 𝐺)
11 djurf1o 6952 . . . . . 6 inr:V–1-1-onto→({1o} × V)
12 f1of1 5374 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1311, 12ax-mp 5 . . . . 5 inr:V–1-1→({1o} × V)
14 df-f1 5136 . . . . . 6 (inr:V–1-1→({1o} × V) ↔ (inr:V⟶({1o} × V) ∧ Fun inr))
1514simprbi 273 . . . . 5 (inr:V–1-1→({1o} × V) → Fun inr)
1613, 15mp1i 10 . . . 4 (𝜑 → Fun inr)
17 funco 5171 . . . 4 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
1810, 16, 17syl2anc 409 . . 3 (𝜑 → Fun (𝐺inr))
19 dmcoss 4816 . . . . . . 7 dom (𝐹inl) ⊆ dom inl
20 df-rn 4558 . . . . . . 7 ran inl = dom inl
2119, 20sseqtrri 3137 . . . . . 6 dom (𝐹inl) ⊆ ran inl
22 dmcoss 4816 . . . . . . 7 dom (𝐺inr) ⊆ dom inr
23 df-rn 4558 . . . . . . 7 ran inr = dom inr
2422, 23sseqtrri 3137 . . . . . 6 dom (𝐺inr) ⊆ ran inr
25 ss2in 3309 . . . . . 6 ((dom (𝐹inl) ⊆ ran inl ∧ dom (𝐺inr) ⊆ ran inr) → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr))
2621, 24, 25mp2an 423 . . . . 5 (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr)
27 rnresv 5006 . . . . . . . . 9 ran (inl ↾ V) = ran inl
2827eqcomi 2144 . . . . . . . 8 ran inl = ran (inl ↾ V)
29 rnresv 5006 . . . . . . . . 9 ran (inr ↾ V) = ran inr
3029eqcomi 2144 . . . . . . . 8 ran inr = ran (inr ↾ V)
3128, 30ineq12i 3280 . . . . . . 7 (ran inl ∩ ran inr) = (ran (inl ↾ V) ∩ ran (inr ↾ V))
32 djuinr 6956 . . . . . . 7 (ran (inl ↾ V) ∩ ran (inr ↾ V)) = ∅
3331, 32eqtri 2161 . . . . . 6 (ran inl ∩ ran inr) = ∅
3433a1i 9 . . . . 5 (𝜑 → (ran inl ∩ ran inr) = ∅)
3526, 34sseqtrid 3152 . . . 4 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅)
36 ss0 3408 . . . 4 ((dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅ → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
3735, 36syl 14 . . 3 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
38 funun 5175 . . 3 (((Fun (𝐹inl) ∧ Fun (𝐺inr)) ∧ (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅) → Fun ((𝐹inl) ∪ (𝐺inr)))
399, 18, 37, 38syl21anc 1216 . 2 (𝜑 → Fun ((𝐹inl) ∪ (𝐺inr)))
40 df-case 6977 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
4140funeqi 5152 . 2 (Fun case(𝐹, 𝐺) ↔ Fun ((𝐹inl) ∪ (𝐺inr)))
4239, 41sylibr 133 1 (𝜑 → Fun case(𝐹, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  Vcvv 2689  cun 3074  cin 3075  wss 3076  c0 3368  {csn 3532   × cxp 4545  ccnv 4546  dom cdm 4547  ran crn 4548  cres 4549  ccom 4551  Fun wfun 5125  wf 5127  1-1wf1 5128  1-1-ontowf1o 5130  1oc1o 6314  inlcinl 6938  inrcinr 6939  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef  6981
  Copyright terms: Public domain W3C validator