ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel GIF version

Theorem caserel 7103
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7100 . 2 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
2 cocnvss 5168 . . . 4 (𝑅inl) ⊆ (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl))
3 inlresf1 7077 . . . . . 6 (inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆)
4 f1rn 5436 . . . . . 6 ((inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆))
53, 4ax-mp 5 . . . . 5 ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆)
6 resss 4945 . . . . . . 7 (𝑅 ↾ dom inl) ⊆ 𝑅
7 rnss 4871 . . . . . . 7 ((𝑅 ↾ dom inl) ⊆ 𝑅 → ran (𝑅 ↾ dom inl) ⊆ ran 𝑅)
86, 7ax-mp 5 . . . . . 6 ran (𝑅 ↾ dom inl) ⊆ ran 𝑅
9 ssun1 3312 . . . . . 6 ran 𝑅 ⊆ (ran 𝑅 ∪ ran 𝑆)
108, 9sstri 3178 . . . . 5 ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)
11 xpss12 4747 . . . . 5 ((ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
125, 10, 11mp2an 426 . . . 4 (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
132, 12sstri 3178 . . 3 (𝑅inl) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
14 cocnvss 5168 . . . 4 (𝑆inr) ⊆ (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr))
15 inrresf1 7078 . . . . . 6 (inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆)
16 f1rn 5436 . . . . . 6 ((inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆))
1715, 16ax-mp 5 . . . . 5 ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆)
18 resss 4945 . . . . . . 7 (𝑆 ↾ dom inr) ⊆ 𝑆
19 rnss 4871 . . . . . . 7 ((𝑆 ↾ dom inr) ⊆ 𝑆 → ran (𝑆 ↾ dom inr) ⊆ ran 𝑆)
2018, 19ax-mp 5 . . . . . 6 ran (𝑆 ↾ dom inr) ⊆ ran 𝑆
21 ssun2 3313 . . . . . 6 ran 𝑆 ⊆ (ran 𝑅 ∪ ran 𝑆)
2220, 21sstri 3178 . . . . 5 ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)
23 xpss12 4747 . . . . 5 ((ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
2417, 22, 23mp2an 426 . . . 4 (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2514, 24sstri 3178 . . 3 (𝑆inr) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2613, 25unssi 3324 . 2 ((𝑅inl) ∪ (𝑆inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
271, 26eqsstri 3201 1 case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
Colors of variables: wff set class
Syntax hints:  cun 3141  wss 3143   × cxp 4638  ccnv 4639  dom cdm 4640  ran crn 4641  cres 4642  ccom 4644  1-1wf1 5227  cdju 7053  inlcinl 7061  inrcinr 7062  casecdjucase 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-iord 4380  df-on 4382  df-suc 4385  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-1st 6158  df-2nd 6159  df-1o 6434  df-dju 7054  df-inl 7063  df-inr 7064  df-case 7100
This theorem is referenced by:  casef  7104
  Copyright terms: Public domain W3C validator