Proof of Theorem caserel
Step | Hyp | Ref
| Expression |
1 | | df-case 7061 |
. 2
⊢
case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
2 | | cocnvss 5136 |
. . . 4
⊢ (𝑅 ∘ ◡inl) ⊆ (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) |
3 | | inlresf1 7038 |
. . . . . 6
⊢ (inl
↾ dom 𝑅):dom 𝑅–1-1→(dom 𝑅 ⊔ dom 𝑆) |
4 | | f1rn 5404 |
. . . . . 6
⊢ ((inl
↾ dom 𝑅):dom 𝑅–1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆)) |
5 | 3, 4 | ax-mp 5 |
. . . . 5
⊢ ran (inl
↾ dom 𝑅) ⊆ (dom
𝑅 ⊔ dom 𝑆) |
6 | | resss 4915 |
. . . . . . 7
⊢ (𝑅 ↾ dom inl) ⊆ 𝑅 |
7 | | rnss 4841 |
. . . . . . 7
⊢ ((𝑅 ↾ dom inl) ⊆ 𝑅 → ran (𝑅 ↾ dom inl) ⊆ ran 𝑅) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
⊢ ran
(𝑅 ↾ dom inl) ⊆
ran 𝑅 |
9 | | ssun1 3290 |
. . . . . 6
⊢ ran 𝑅 ⊆ (ran 𝑅 ∪ ran 𝑆) |
10 | 8, 9 | sstri 3156 |
. . . . 5
⊢ ran
(𝑅 ↾ dom inl) ⊆
(ran 𝑅 ∪ ran 𝑆) |
11 | | xpss12 4718 |
. . . . 5
⊢ ((ran
(inl ↾ dom 𝑅) ⊆
(dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))) |
12 | 5, 10, 11 | mp2an 424 |
. . . 4
⊢ (ran (inl
↾ dom 𝑅) × ran
(𝑅 ↾ dom inl))
⊆ ((dom 𝑅 ⊔
dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |
13 | 2, 12 | sstri 3156 |
. . 3
⊢ (𝑅 ∘ ◡inl) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |
14 | | cocnvss 5136 |
. . . 4
⊢ (𝑆 ∘ ◡inr) ⊆ (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) |
15 | | inrresf1 7039 |
. . . . . 6
⊢ (inr
↾ dom 𝑆):dom 𝑆–1-1→(dom 𝑅 ⊔ dom 𝑆) |
16 | | f1rn 5404 |
. . . . . 6
⊢ ((inr
↾ dom 𝑆):dom 𝑆–1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆)) |
17 | 15, 16 | ax-mp 5 |
. . . . 5
⊢ ran (inr
↾ dom 𝑆) ⊆ (dom
𝑅 ⊔ dom 𝑆) |
18 | | resss 4915 |
. . . . . . 7
⊢ (𝑆 ↾ dom inr) ⊆ 𝑆 |
19 | | rnss 4841 |
. . . . . . 7
⊢ ((𝑆 ↾ dom inr) ⊆ 𝑆 → ran (𝑆 ↾ dom inr) ⊆ ran 𝑆) |
20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ ran
(𝑆 ↾ dom inr) ⊆
ran 𝑆 |
21 | | ssun2 3291 |
. . . . . 6
⊢ ran 𝑆 ⊆ (ran 𝑅 ∪ ran 𝑆) |
22 | 20, 21 | sstri 3156 |
. . . . 5
⊢ ran
(𝑆 ↾ dom inr) ⊆
(ran 𝑅 ∪ ran 𝑆) |
23 | | xpss12 4718 |
. . . . 5
⊢ ((ran
(inr ↾ dom 𝑆) ⊆
(dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))) |
24 | 17, 22, 23 | mp2an 424 |
. . . 4
⊢ (ran (inr
↾ dom 𝑆) × ran
(𝑆 ↾ dom inr))
⊆ ((dom 𝑅 ⊔
dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |
25 | 14, 24 | sstri 3156 |
. . 3
⊢ (𝑆 ∘ ◡inr) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |
26 | 13, 25 | unssi 3302 |
. 2
⊢ ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |
27 | 1, 26 | eqsstri 3179 |
1
⊢
case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)) |