ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel GIF version

Theorem caserel 6980
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))

Proof of Theorem caserel
StepHypRef Expression
1 df-case 6977 . 2 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
2 cocnvss 5072 . . . 4 (𝑅inl) ⊆ (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl))
3 inlresf1 6954 . . . . . 6 (inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆)
4 f1rn 5337 . . . . . 6 ((inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆))
53, 4ax-mp 5 . . . . 5 ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆)
6 resss 4851 . . . . . . 7 (𝑅 ↾ dom inl) ⊆ 𝑅
7 rnss 4777 . . . . . . 7 ((𝑅 ↾ dom inl) ⊆ 𝑅 → ran (𝑅 ↾ dom inl) ⊆ ran 𝑅)
86, 7ax-mp 5 . . . . . 6 ran (𝑅 ↾ dom inl) ⊆ ran 𝑅
9 ssun1 3244 . . . . . 6 ran 𝑅 ⊆ (ran 𝑅 ∪ ran 𝑆)
108, 9sstri 3111 . . . . 5 ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)
11 xpss12 4654 . . . . 5 ((ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
125, 10, 11mp2an 423 . . . 4 (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
132, 12sstri 3111 . . 3 (𝑅inl) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
14 cocnvss 5072 . . . 4 (𝑆inr) ⊆ (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr))
15 inrresf1 6955 . . . . . 6 (inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆)
16 f1rn 5337 . . . . . 6 ((inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆))
1715, 16ax-mp 5 . . . . 5 ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆)
18 resss 4851 . . . . . . 7 (𝑆 ↾ dom inr) ⊆ 𝑆
19 rnss 4777 . . . . . . 7 ((𝑆 ↾ dom inr) ⊆ 𝑆 → ran (𝑆 ↾ dom inr) ⊆ ran 𝑆)
2018, 19ax-mp 5 . . . . . 6 ran (𝑆 ↾ dom inr) ⊆ ran 𝑆
21 ssun2 3245 . . . . . 6 ran 𝑆 ⊆ (ran 𝑅 ∪ ran 𝑆)
2220, 21sstri 3111 . . . . 5 ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)
23 xpss12 4654 . . . . 5 ((ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
2417, 22, 23mp2an 423 . . . 4 (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2514, 24sstri 3111 . . 3 (𝑆inr) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2613, 25unssi 3256 . 2 ((𝑅inl) ∪ (𝑆inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
271, 26eqsstri 3134 1 case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
Colors of variables: wff set class
Syntax hints:  cun 3074  wss 3076   × cxp 4545  ccnv 4546  dom cdm 4547  ran crn 4548  cres 4549  ccom 4551  1-1wf1 5128  cdju 6930  inlcinl 6938  inrcinr 6939  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef  6981
  Copyright terms: Public domain W3C validator