ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel GIF version

Theorem caserel 7189
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7186 . 2 case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
2 cocnvss 5208 . . . 4 (𝑅inl) ⊆ (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl))
3 inlresf1 7163 . . . . . 6 (inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆)
4 f1rn 5482 . . . . . 6 ((inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆))
53, 4ax-mp 5 . . . . 5 ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆)
6 resss 4983 . . . . . . 7 (𝑅 ↾ dom inl) ⊆ 𝑅
7 rnss 4908 . . . . . . 7 ((𝑅 ↾ dom inl) ⊆ 𝑅 → ran (𝑅 ↾ dom inl) ⊆ ran 𝑅)
86, 7ax-mp 5 . . . . . 6 ran (𝑅 ↾ dom inl) ⊆ ran 𝑅
9 ssun1 3336 . . . . . 6 ran 𝑅 ⊆ (ran 𝑅 ∪ ran 𝑆)
108, 9sstri 3202 . . . . 5 ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)
11 xpss12 4782 . . . . 5 ((ran (inl ↾ dom 𝑅) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑅 ↾ dom inl) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
125, 10, 11mp2an 426 . . . 4 (ran (inl ↾ dom 𝑅) × ran (𝑅 ↾ dom inl)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
132, 12sstri 3202 . . 3 (𝑅inl) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
14 cocnvss 5208 . . . 4 (𝑆inr) ⊆ (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr))
15 inrresf1 7164 . . . . . 6 (inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆)
16 f1rn 5482 . . . . . 6 ((inr ↾ dom 𝑆):dom 𝑆1-1→(dom 𝑅 ⊔ dom 𝑆) → ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆))
1715, 16ax-mp 5 . . . . 5 ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆)
18 resss 4983 . . . . . . 7 (𝑆 ↾ dom inr) ⊆ 𝑆
19 rnss 4908 . . . . . . 7 ((𝑆 ↾ dom inr) ⊆ 𝑆 → ran (𝑆 ↾ dom inr) ⊆ ran 𝑆)
2018, 19ax-mp 5 . . . . . 6 ran (𝑆 ↾ dom inr) ⊆ ran 𝑆
21 ssun2 3337 . . . . . 6 ran 𝑆 ⊆ (ran 𝑅 ∪ ran 𝑆)
2220, 21sstri 3202 . . . . 5 ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)
23 xpss12 4782 . . . . 5 ((ran (inr ↾ dom 𝑆) ⊆ (dom 𝑅 ⊔ dom 𝑆) ∧ ran (𝑆 ↾ dom inr) ⊆ (ran 𝑅 ∪ ran 𝑆)) → (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆)))
2417, 22, 23mp2an 426 . . . 4 (ran (inr ↾ dom 𝑆) × ran (𝑆 ↾ dom inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2514, 24sstri 3202 . . 3 (𝑆inr) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
2613, 25unssi 3348 . 2 ((𝑅inl) ∪ (𝑆inr)) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
271, 26eqsstri 3225 1 case(𝑅, 𝑆) ⊆ ((dom 𝑅 ⊔ dom 𝑆) × (ran 𝑅 ∪ ran 𝑆))
Colors of variables: wff set class
Syntax hints:  cun 3164  wss 3166   × cxp 4673  ccnv 4674  dom cdm 4675  ran crn 4676  cres 4677  ccom 4679  1-1wf1 5268  cdju 7139  inlcinl 7147  inrcinr 7148  casecdjucase 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150  df-case 7186
This theorem is referenced by:  casef  7190
  Copyright terms: Public domain W3C validator