ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm GIF version

Theorem casedm 7161
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7159 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21dmeqi 4868 . 2 dom case(𝐹, 𝐺) = dom ((𝐹inl) ∪ (𝐺inr))
3 dmun 4874 . 2 dom ((𝐹inl) ∪ (𝐺inr)) = (dom (𝐹inl) ∪ dom (𝐺inr))
4 dmco 5179 . . . . 5 dom (𝐹inl) = (inl “ dom 𝐹)
5 imacnvcnv 5135 . . . . 5 (inl “ dom 𝐹) = (inl “ dom 𝐹)
6 df-ima 4677 . . . . 5 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
74, 5, 63eqtri 2221 . . . 4 dom (𝐹inl) = ran (inl ↾ dom 𝐹)
8 dmco 5179 . . . . 5 dom (𝐺inr) = (inr “ dom 𝐺)
9 imacnvcnv 5135 . . . . 5 (inr “ dom 𝐺) = (inr “ dom 𝐺)
10 df-ima 4677 . . . . 5 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
118, 9, 103eqtri 2221 . . . 4 dom (𝐺inr) = ran (inr ↾ dom 𝐺)
127, 11uneq12i 3316 . . 3 (dom (𝐹inl) ∪ dom (𝐺inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
13 djuunr 7141 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1412, 13eqtri 2217 . 2 (dom (𝐹inl) ∪ dom (𝐺inr)) = (dom 𝐹 ⊔ dom 𝐺)
152, 3, 143eqtri 2221 1 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155  ccnv 4663  dom cdm 4664  ran crn 4665  cres 4666  cima 4667  ccom 4668  cdju 7112  inlcinl 7120  inrcinr 7121  casecdjucase 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by:  casef  7163
  Copyright terms: Public domain W3C validator