![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > casedm | GIF version |
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casedm | ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-case 7145 | . . 3 ⊢ case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | |
2 | 1 | dmeqi 4864 | . 2 ⊢ dom case(𝐹, 𝐺) = dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
3 | dmun 4870 | . 2 ⊢ dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) = (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) | |
4 | dmco 5175 | . . . . 5 ⊢ dom (𝐹 ∘ ◡inl) = (◡◡inl “ dom 𝐹) | |
5 | imacnvcnv 5131 | . . . . 5 ⊢ (◡◡inl “ dom 𝐹) = (inl “ dom 𝐹) | |
6 | df-ima 4673 | . . . . 5 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
7 | 4, 5, 6 | 3eqtri 2218 | . . . 4 ⊢ dom (𝐹 ∘ ◡inl) = ran (inl ↾ dom 𝐹) |
8 | dmco 5175 | . . . . 5 ⊢ dom (𝐺 ∘ ◡inr) = (◡◡inr “ dom 𝐺) | |
9 | imacnvcnv 5131 | . . . . 5 ⊢ (◡◡inr “ dom 𝐺) = (inr “ dom 𝐺) | |
10 | df-ima 4673 | . . . . 5 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
11 | 8, 9, 10 | 3eqtri 2218 | . . . 4 ⊢ dom (𝐺 ∘ ◡inr) = ran (inr ↾ dom 𝐺) |
12 | 7, 11 | uneq12i 3312 | . . 3 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
13 | djuunr 7127 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
14 | 12, 13 | eqtri 2214 | . 2 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (dom 𝐹 ⊔ dom 𝐺) |
15 | 2, 3, 14 | 3eqtri 2218 | 1 ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3152 ◡ccnv 4659 dom cdm 4660 ran crn 4661 ↾ cres 4662 “ cima 4663 ∘ ccom 4664 ⊔ cdju 7098 inlcinl 7106 inrcinr 7107 casecdjucase 7144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1st 6195 df-2nd 6196 df-1o 6471 df-dju 7099 df-inl 7108 df-inr 7109 df-case 7145 |
This theorem is referenced by: casef 7149 |
Copyright terms: Public domain | W3C validator |