ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm GIF version

Theorem casedm 7187
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7185 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21dmeqi 4878 . 2 dom case(𝐹, 𝐺) = dom ((𝐹inl) ∪ (𝐺inr))
3 dmun 4884 . 2 dom ((𝐹inl) ∪ (𝐺inr)) = (dom (𝐹inl) ∪ dom (𝐺inr))
4 dmco 5190 . . . . 5 dom (𝐹inl) = (inl “ dom 𝐹)
5 imacnvcnv 5146 . . . . 5 (inl “ dom 𝐹) = (inl “ dom 𝐹)
6 df-ima 4687 . . . . 5 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
74, 5, 63eqtri 2229 . . . 4 dom (𝐹inl) = ran (inl ↾ dom 𝐹)
8 dmco 5190 . . . . 5 dom (𝐺inr) = (inr “ dom 𝐺)
9 imacnvcnv 5146 . . . . 5 (inr “ dom 𝐺) = (inr “ dom 𝐺)
10 df-ima 4687 . . . . 5 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
118, 9, 103eqtri 2229 . . . 4 dom (𝐺inr) = ran (inr ↾ dom 𝐺)
127, 11uneq12i 3324 . . 3 (dom (𝐹inl) ∪ dom (𝐺inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
13 djuunr 7167 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1412, 13eqtri 2225 . 2 (dom (𝐹inl) ∪ dom (𝐺inr)) = (dom 𝐹 ⊔ dom 𝐺)
152, 3, 143eqtri 2229 1 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cun 3163  ccnv 4673  dom cdm 4674  ran crn 4675  cres 4676  cima 4677  ccom 4678  cdju 7138  inlcinl 7146  inrcinr 7147  casecdjucase 7184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-dju 7139  df-inl 7148  df-inr 7149  df-case 7185
This theorem is referenced by:  casef  7189
  Copyright terms: Public domain W3C validator