ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm GIF version

Theorem casedm 7214
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7212 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21dmeqi 4898 . 2 dom case(𝐹, 𝐺) = dom ((𝐹inl) ∪ (𝐺inr))
3 dmun 4904 . 2 dom ((𝐹inl) ∪ (𝐺inr)) = (dom (𝐹inl) ∪ dom (𝐺inr))
4 dmco 5210 . . . . 5 dom (𝐹inl) = (inl “ dom 𝐹)
5 imacnvcnv 5166 . . . . 5 (inl “ dom 𝐹) = (inl “ dom 𝐹)
6 df-ima 4706 . . . . 5 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
74, 5, 63eqtri 2232 . . . 4 dom (𝐹inl) = ran (inl ↾ dom 𝐹)
8 dmco 5210 . . . . 5 dom (𝐺inr) = (inr “ dom 𝐺)
9 imacnvcnv 5166 . . . . 5 (inr “ dom 𝐺) = (inr “ dom 𝐺)
10 df-ima 4706 . . . . 5 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
118, 9, 103eqtri 2232 . . . 4 dom (𝐺inr) = ran (inr ↾ dom 𝐺)
127, 11uneq12i 3333 . . 3 (dom (𝐹inl) ∪ dom (𝐺inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
13 djuunr 7194 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1412, 13eqtri 2228 . 2 (dom (𝐹inl) ∪ dom (𝐺inr)) = (dom 𝐹 ⊔ dom 𝐺)
152, 3, 143eqtri 2232 1 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3172  ccnv 4692  dom cdm 4693  ran crn 4694  cres 4695  cima 4696  ccom 4697  cdju 7165  inlcinl 7173  inrcinr 7174  casecdjucase 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212
This theorem is referenced by:  casef  7216
  Copyright terms: Public domain W3C validator