| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > casedm | GIF version | ||
| Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| casedm | ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-case 7212 | . . 3 ⊢ case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | |
| 2 | 1 | dmeqi 4898 | . 2 ⊢ dom case(𝐹, 𝐺) = dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
| 3 | dmun 4904 | . 2 ⊢ dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) = (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) | |
| 4 | dmco 5210 | . . . . 5 ⊢ dom (𝐹 ∘ ◡inl) = (◡◡inl “ dom 𝐹) | |
| 5 | imacnvcnv 5166 | . . . . 5 ⊢ (◡◡inl “ dom 𝐹) = (inl “ dom 𝐹) | |
| 6 | df-ima 4706 | . . . . 5 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
| 7 | 4, 5, 6 | 3eqtri 2232 | . . . 4 ⊢ dom (𝐹 ∘ ◡inl) = ran (inl ↾ dom 𝐹) |
| 8 | dmco 5210 | . . . . 5 ⊢ dom (𝐺 ∘ ◡inr) = (◡◡inr “ dom 𝐺) | |
| 9 | imacnvcnv 5166 | . . . . 5 ⊢ (◡◡inr “ dom 𝐺) = (inr “ dom 𝐺) | |
| 10 | df-ima 4706 | . . . . 5 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
| 11 | 8, 9, 10 | 3eqtri 2232 | . . . 4 ⊢ dom (𝐺 ∘ ◡inr) = ran (inr ↾ dom 𝐺) |
| 12 | 7, 11 | uneq12i 3333 | . . 3 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
| 13 | djuunr 7194 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
| 14 | 12, 13 | eqtri 2228 | . 2 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (dom 𝐹 ⊔ dom 𝐺) |
| 15 | 2, 3, 14 | 3eqtri 2232 | 1 ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 ◡ccnv 4692 dom cdm 4693 ran crn 4694 ↾ cres 4695 “ cima 4696 ∘ ccom 4697 ⊔ cdju 7165 inlcinl 7173 inrcinr 7174 casecdjucase 7211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 df-case 7212 |
| This theorem is referenced by: casef 7216 |
| Copyright terms: Public domain | W3C validator |