ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm GIF version

Theorem casedm 7020
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7018 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21dmeqi 4784 . 2 dom case(𝐹, 𝐺) = dom ((𝐹inl) ∪ (𝐺inr))
3 dmun 4790 . 2 dom ((𝐹inl) ∪ (𝐺inr)) = (dom (𝐹inl) ∪ dom (𝐺inr))
4 dmco 5091 . . . . 5 dom (𝐹inl) = (inl “ dom 𝐹)
5 imacnvcnv 5047 . . . . 5 (inl “ dom 𝐹) = (inl “ dom 𝐹)
6 df-ima 4596 . . . . 5 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
74, 5, 63eqtri 2182 . . . 4 dom (𝐹inl) = ran (inl ↾ dom 𝐹)
8 dmco 5091 . . . . 5 dom (𝐺inr) = (inr “ dom 𝐺)
9 imacnvcnv 5047 . . . . 5 (inr “ dom 𝐺) = (inr “ dom 𝐺)
10 df-ima 4596 . . . . 5 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
118, 9, 103eqtri 2182 . . . 4 dom (𝐺inr) = ran (inr ↾ dom 𝐺)
127, 11uneq12i 3259 . . 3 (dom (𝐹inl) ∪ dom (𝐺inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
13 djuunr 7000 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1412, 13eqtri 2178 . 2 (dom (𝐹inl) ∪ dom (𝐺inr)) = (dom 𝐹 ⊔ dom 𝐺)
152, 3, 143eqtri 2182 1 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1335  cun 3100  ccnv 4582  dom cdm 4583  ran crn 4584  cres 4585  cima 4586  ccom 4587  cdju 6971  inlcinl 6979  inrcinr 6980  casecdjucase 7017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-1st 6082  df-2nd 6083  df-1o 6357  df-dju 6972  df-inl 6981  df-inr 6982  df-case 7018
This theorem is referenced by:  casef  7022
  Copyright terms: Public domain W3C validator