ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casedm GIF version

Theorem casedm 7085
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
casedm dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem casedm
StepHypRef Expression
1 df-case 7083 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21dmeqi 4829 . 2 dom case(𝐹, 𝐺) = dom ((𝐹inl) ∪ (𝐺inr))
3 dmun 4835 . 2 dom ((𝐹inl) ∪ (𝐺inr)) = (dom (𝐹inl) ∪ dom (𝐺inr))
4 dmco 5138 . . . . 5 dom (𝐹inl) = (inl “ dom 𝐹)
5 imacnvcnv 5094 . . . . 5 (inl “ dom 𝐹) = (inl “ dom 𝐹)
6 df-ima 4640 . . . . 5 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
74, 5, 63eqtri 2202 . . . 4 dom (𝐹inl) = ran (inl ↾ dom 𝐹)
8 dmco 5138 . . . . 5 dom (𝐺inr) = (inr “ dom 𝐺)
9 imacnvcnv 5094 . . . . 5 (inr “ dom 𝐺) = (inr “ dom 𝐺)
10 df-ima 4640 . . . . 5 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
118, 9, 103eqtri 2202 . . . 4 dom (𝐺inr) = ran (inr ↾ dom 𝐺)
127, 11uneq12i 3288 . . 3 (dom (𝐹inl) ∪ dom (𝐺inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
13 djuunr 7065 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1412, 13eqtri 2198 . 2 (dom (𝐹inl) ∪ dom (𝐺inr)) = (dom 𝐹 ⊔ dom 𝐺)
152, 3, 143eqtri 2202 1 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cun 3128  ccnv 4626  dom cdm 4627  ran crn 4628  cres 4629  cima 4630  ccom 4631  cdju 7036  inlcinl 7044  inrcinr 7045  casecdjucase 7082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-1o 6417  df-dju 7037  df-inl 7046  df-inr 7047  df-case 7083
This theorem is referenced by:  casef  7087
  Copyright terms: Public domain W3C validator