![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > casedm | GIF version |
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casedm | ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-case 6765 | . . 3 ⊢ case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | |
2 | 1 | dmeqi 4633 | . 2 ⊢ dom case(𝐹, 𝐺) = dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
3 | dmun 4639 | . 2 ⊢ dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) = (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) | |
4 | dmco 4934 | . . . . 5 ⊢ dom (𝐹 ∘ ◡inl) = (◡◡inl “ dom 𝐹) | |
5 | imacnvcnv 4890 | . . . . 5 ⊢ (◡◡inl “ dom 𝐹) = (inl “ dom 𝐹) | |
6 | df-ima 4449 | . . . . 5 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
7 | 4, 5, 6 | 3eqtri 2112 | . . . 4 ⊢ dom (𝐹 ∘ ◡inl) = ran (inl ↾ dom 𝐹) |
8 | dmco 4934 | . . . . 5 ⊢ dom (𝐺 ∘ ◡inr) = (◡◡inr “ dom 𝐺) | |
9 | imacnvcnv 4890 | . . . . 5 ⊢ (◡◡inr “ dom 𝐺) = (inr “ dom 𝐺) | |
10 | df-ima 4449 | . . . . 5 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
11 | 8, 9, 10 | 3eqtri 2112 | . . . 4 ⊢ dom (𝐺 ∘ ◡inr) = ran (inr ↾ dom 𝐺) |
12 | 7, 11 | uneq12i 3152 | . . 3 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
13 | djuunr 6748 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
14 | 12, 13 | eqtri 2108 | . 2 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (dom 𝐹 ⊔ dom 𝐺) |
15 | 2, 3, 14 | 3eqtri 2112 | 1 ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∪ cun 2997 ◡ccnv 4435 dom cdm 4436 ran crn 4437 ↾ cres 4438 “ cima 4439 ∘ ccom 4440 ⊔ cdju 6720 inlcinl 6727 inrcinr 6728 casecdjucase 6764 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-nul 3963 ax-pow 4007 ax-pr 4034 ax-un 4258 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-tr 3935 df-id 4118 df-iord 4191 df-on 4193 df-suc 4196 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-f1 5015 df-fo 5016 df-f1o 5017 df-fv 5018 df-1st 5903 df-2nd 5904 df-1o 6173 df-dju 6721 df-inl 6729 df-inr 6730 df-case 6765 |
This theorem is referenced by: casef 6769 |
Copyright terms: Public domain | W3C validator |