| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > casedm | GIF version | ||
| Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| casedm | ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-case 7247 | . . 3 ⊢ case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | |
| 2 | 1 | dmeqi 4923 | . 2 ⊢ dom case(𝐹, 𝐺) = dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
| 3 | dmun 4929 | . 2 ⊢ dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) = (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) | |
| 4 | dmco 5236 | . . . . 5 ⊢ dom (𝐹 ∘ ◡inl) = (◡◡inl “ dom 𝐹) | |
| 5 | imacnvcnv 5192 | . . . . 5 ⊢ (◡◡inl “ dom 𝐹) = (inl “ dom 𝐹) | |
| 6 | df-ima 4731 | . . . . 5 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
| 7 | 4, 5, 6 | 3eqtri 2254 | . . . 4 ⊢ dom (𝐹 ∘ ◡inl) = ran (inl ↾ dom 𝐹) |
| 8 | dmco 5236 | . . . . 5 ⊢ dom (𝐺 ∘ ◡inr) = (◡◡inr “ dom 𝐺) | |
| 9 | imacnvcnv 5192 | . . . . 5 ⊢ (◡◡inr “ dom 𝐺) = (inr “ dom 𝐺) | |
| 10 | df-ima 4731 | . . . . 5 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
| 11 | 8, 9, 10 | 3eqtri 2254 | . . . 4 ⊢ dom (𝐺 ∘ ◡inr) = ran (inr ↾ dom 𝐺) |
| 12 | 7, 11 | uneq12i 3356 | . . 3 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
| 13 | djuunr 7229 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
| 14 | 12, 13 | eqtri 2250 | . 2 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (dom 𝐹 ⊔ dom 𝐺) |
| 15 | 2, 3, 14 | 3eqtri 2254 | 1 ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ◡ccnv 4717 dom cdm 4718 ran crn 4719 ↾ cres 4720 “ cima 4721 ∘ ccom 4722 ⊔ cdju 7200 inlcinl 7208 inrcinr 7209 casecdjucase 7246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-dju 7201 df-inl 7210 df-inr 7211 df-case 7247 |
| This theorem is referenced by: casef 7251 |
| Copyright terms: Public domain | W3C validator |