Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casedm | GIF version |
Description: The domain of the "case" construction is the disjoint union of the domains. TODO (although less important): ⊢ ran case(𝐹, 𝐺) = (ran 𝐹 ∪ ran 𝐺). (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casedm | ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-case 7018 | . . 3 ⊢ case(𝐹, 𝐺) = ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) | |
2 | 1 | dmeqi 4784 | . 2 ⊢ dom case(𝐹, 𝐺) = dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) |
3 | dmun 4790 | . 2 ⊢ dom ((𝐹 ∘ ◡inl) ∪ (𝐺 ∘ ◡inr)) = (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) | |
4 | dmco 5091 | . . . . 5 ⊢ dom (𝐹 ∘ ◡inl) = (◡◡inl “ dom 𝐹) | |
5 | imacnvcnv 5047 | . . . . 5 ⊢ (◡◡inl “ dom 𝐹) = (inl “ dom 𝐹) | |
6 | df-ima 4596 | . . . . 5 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
7 | 4, 5, 6 | 3eqtri 2182 | . . . 4 ⊢ dom (𝐹 ∘ ◡inl) = ran (inl ↾ dom 𝐹) |
8 | dmco 5091 | . . . . 5 ⊢ dom (𝐺 ∘ ◡inr) = (◡◡inr “ dom 𝐺) | |
9 | imacnvcnv 5047 | . . . . 5 ⊢ (◡◡inr “ dom 𝐺) = (inr “ dom 𝐺) | |
10 | df-ima 4596 | . . . . 5 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
11 | 8, 9, 10 | 3eqtri 2182 | . . . 4 ⊢ dom (𝐺 ∘ ◡inr) = ran (inr ↾ dom 𝐺) |
12 | 7, 11 | uneq12i 3259 | . . 3 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
13 | djuunr 7000 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
14 | 12, 13 | eqtri 2178 | . 2 ⊢ (dom (𝐹 ∘ ◡inl) ∪ dom (𝐺 ∘ ◡inr)) = (dom 𝐹 ⊔ dom 𝐺) |
15 | 2, 3, 14 | 3eqtri 2182 | 1 ⊢ dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∪ cun 3100 ◡ccnv 4582 dom cdm 4583 ran crn 4584 ↾ cres 4585 “ cima 4586 ∘ ccom 4587 ⊔ cdju 6971 inlcinl 6979 inrcinr 6980 casecdjucase 7017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-dju 6972 df-inl 6981 df-inr 6982 df-case 7018 |
This theorem is referenced by: casef 7022 |
Copyright terms: Public domain | W3C validator |