| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmmpl | GIF version | ||
| Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmpl | ⊢ Rel dom mPoly |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mplcoe 14470 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) | |
| 2 | 1 | reldmmpo 6064 | 1 ⊢ Rel dom mPoly |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∀wral 2485 ∃wrex 2486 {crab 2489 Vcvv 2773 ⦋csb 3094 class class class wbr 4047 dom cdm 4679 Rel wrel 4684 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 < clt 8114 ℕ0cn0 9302 Basecbs 12876 ↾s cress 12877 0gc0g 13132 mPwSer cmps 14467 mPoly cmpl 14468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-dm 4689 df-oprab 5955 df-mpo 5956 df-mplcoe 14470 |
| This theorem is referenced by: mplrcl 14500 mplbasss 14502 mpladd 14510 |
| Copyright terms: Public domain | W3C validator |