ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmpl GIF version

Theorem reldmmpl 14661
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmmpl Rel dom mPoly

Proof of Theorem reldmmpl
Dummy variables 𝑓 𝑖 𝑟 𝑎 𝑏 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mplcoe 14636 . 2 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
21reldmmpo 6122 1 Rel dom mPoly
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  csb 3124   class class class wbr 4083  dom cdm 4719  Rel wrel 4724  cfv 5318  (class class class)co 6007  𝑚 cmap 6803   < clt 8189  0cn0 9377  Basecbs 13040  s cress 13041  0gc0g 13297   mPwSer cmps 14633   mPoly cmpl 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729  df-oprab 6011  df-mpo 6012  df-mplcoe 14636
This theorem is referenced by:  mplrcl  14666  mplbasss  14668  mpladd  14676
  Copyright terms: Public domain W3C validator