| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmmpl | GIF version | ||
| Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmpl | ⊢ Rel dom mPoly |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mplcoe 14636 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) | |
| 2 | 1 | reldmmpo 6122 | 1 ⊢ Rel dom mPoly |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∀wral 2508 ∃wrex 2509 {crab 2512 Vcvv 2799 ⦋csb 3124 class class class wbr 4083 dom cdm 4719 Rel wrel 4724 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 < clt 8189 ℕ0cn0 9377 Basecbs 13040 ↾s cress 13041 0gc0g 13297 mPwSer cmps 14633 mPoly cmpl 14634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-dm 4729 df-oprab 6011 df-mpo 6012 df-mplcoe 14636 |
| This theorem is referenced by: mplrcl 14666 mplbasss 14668 mpladd 14676 |
| Copyright terms: Public domain | W3C validator |