| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmmpl | GIF version | ||
| Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmpl | ⊢ Rel dom mPoly |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mplcoe 14593 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) | |
| 2 | 1 | reldmmpo 6087 | 1 ⊢ Rel dom mPoly |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∀wral 2488 ∃wrex 2489 {crab 2492 Vcvv 2779 ⦋csb 3104 class class class wbr 4062 dom cdm 4696 Rel wrel 4701 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 < clt 8149 ℕ0cn0 9337 Basecbs 12998 ↾s cress 12999 0gc0g 13255 mPwSer cmps 14590 mPoly cmpl 14591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-dm 4706 df-oprab 5978 df-mpo 5979 df-mplcoe 14593 |
| This theorem is referenced by: mplrcl 14623 mplbasss 14625 mpladd 14633 |
| Copyright terms: Public domain | W3C validator |