ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmmpl GIF version

Theorem reldmmpl 14618
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmmpl Rel dom mPoly

Proof of Theorem reldmmpl
Dummy variables 𝑓 𝑖 𝑟 𝑎 𝑏 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mplcoe 14593 . 2 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
21reldmmpo 6087 1 Rel dom mPoly
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wral 2488  wrex 2489  {crab 2492  Vcvv 2779  csb 3104   class class class wbr 4062  dom cdm 4696  Rel wrel 4701  cfv 5294  (class class class)co 5974  𝑚 cmap 6765   < clt 8149  0cn0 9337  Basecbs 12998  s cress 12999  0gc0g 13255   mPwSer cmps 14590   mPoly cmpl 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-dm 4706  df-oprab 5978  df-mpo 5979  df-mplcoe 14593
This theorem is referenced by:  mplrcl  14623  mplbasss  14625  mpladd  14633
  Copyright terms: Public domain W3C validator