| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmpsr | GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14469 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 6064 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 {crab 2489 Vcvv 2773 ⦋csb 3094 ∪ cun 3165 {csn 3634 {ctp 3636 〈cop 3637 class class class wbr 4047 ↦ cmpt 4109 × cxp 4677 ◡ccnv 4678 dom cdm 4679 ↾ cres 4681 “ cima 4682 Rel wrel 4684 ‘cfv 5276 (class class class)co 5951 ∈ cmpo 5953 ∘𝑓 cof 6163 ∘𝑟 cofr 6164 ↑𝑚 cmap 6742 Fincfn 6834 ≤ cle 8115 − cmin 8250 ℕcn 9043 ℕ0cn0 9302 ndxcnx 12873 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 Scalarcsca 12956 ·𝑠 cvsca 12957 TopSetcts 12959 TopOpenctopn 13116 ∏tcpt 13131 Σg cgsu 13133 mPwSer cmps 14467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-dm 4689 df-oprab 5955 df-mpo 5956 df-psr 14469 |
| This theorem is referenced by: psrelbas 14481 psradd 14485 psraddcl 14486 |
| Copyright terms: Public domain | W3C validator |