| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmpsr | GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14635 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 6122 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {crab 2512 Vcvv 2799 ⦋csb 3124 ∪ cun 3195 {csn 3666 {ctp 3668 〈cop 3669 class class class wbr 4083 ↦ cmpt 4145 × cxp 4717 ◡ccnv 4718 dom cdm 4719 ↾ cres 4721 “ cima 4722 Rel wrel 4724 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 ∘𝑓 cof 6222 ∘𝑟 cofr 6223 ↑𝑚 cmap 6803 Fincfn 6895 ≤ cle 8190 − cmin 8325 ℕcn 9118 ℕ0cn0 9377 ndxcnx 13037 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Scalarcsca 13121 ·𝑠 cvsca 13122 TopSetcts 13124 TopOpenctopn 13281 ∏tcpt 13296 Σg cgsu 13298 mPwSer cmps 14633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-dm 4729 df-oprab 6011 df-mpo 6012 df-psr 14635 |
| This theorem is referenced by: psrelbas 14647 psradd 14651 psraddcl 14652 |
| Copyright terms: Public domain | W3C validator |