ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmpsr GIF version

Theorem reldmpsr 14295
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14294 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 6038 1 Rel dom mPwSer
Colors of variables: wff set class
Syntax hints:  wcel 2167  {crab 2479  Vcvv 2763  csb 3084  cun 3155  {csn 3623  {ctp 3625  cop 3626   class class class wbr 4034  cmpt 4095   × cxp 4662  ccnv 4663  dom cdm 4664  cres 4666  cima 4667  Rel wrel 4669  cfv 5259  (class class class)co 5925  cmpo 5927  𝑓 cof 6137  𝑟 cofr 6138  𝑚 cmap 6716  Fincfn 6808  cle 8079  cmin 8214  cn 9007  0cn0 9266  ndxcnx 12700  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  TopSetcts 12786  TopOpenctopn 12942  tcpt 12957   Σg cgsu 12959   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-dm 4674  df-oprab 5929  df-mpo 5930  df-psr 14294
This theorem is referenced by:  psrelbas  14304  psradd  14307  psraddcl  14308
  Copyright terms: Public domain W3C validator