| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reldmpsr | GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-psr 14218 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 6034 | 1 ⊢ Rel dom mPwSer | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 {crab 2479 Vcvv 2763 ⦋csb 3084 ∪ cun 3155 {csn 3622 {ctp 3624 〈cop 3625 class class class wbr 4033 ↦ cmpt 4094 × cxp 4661 ◡ccnv 4662 dom cdm 4663 ↾ cres 4665 “ cima 4666 Rel wrel 4668 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 ∘𝑓 cof 6133 ∘𝑟 cofr 6134 ↑𝑚 cmap 6707 Fincfn 6799 ≤ cle 8062 − cmin 8197 ℕcn 8990 ℕ0cn0 9249 ndxcnx 12675 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Scalarcsca 12758 ·𝑠 cvsca 12759 TopSetcts 12761 TopOpenctopn 12911 ∏tcpt 12926 Σg cgsu 12928 mPwSer cmps 14217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-dm 4673 df-oprab 5926 df-mpo 5927 df-psr 14218 | 
| This theorem is referenced by: psrelbas 14228 psradd 14231 psraddcl 14232 | 
| Copyright terms: Public domain | W3C validator |