ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmpsr GIF version

Theorem reldmpsr 14219
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmpsr Rel dom mPwSer

Proof of Theorem reldmpsr
Dummy variables 𝑖 𝑟 𝑦 𝑏 𝑑 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14218 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
21reldmmpo 6034 1 Rel dom mPwSer
Colors of variables: wff set class
Syntax hints:  wcel 2167  {crab 2479  Vcvv 2763  csb 3084  cun 3155  {csn 3622  {ctp 3624  cop 3625   class class class wbr 4033  cmpt 4094   × cxp 4661  ccnv 4662  dom cdm 4663  cres 4665  cima 4666  Rel wrel 4668  cfv 5258  (class class class)co 5922  cmpo 5924  𝑓 cof 6133  𝑟 cofr 6134  𝑚 cmap 6707  Fincfn 6799  cle 8062  cmin 8197  cn 8990  0cn0 9249  ndxcnx 12675  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Scalarcsca 12758   ·𝑠 cvsca 12759  TopSetcts 12761  TopOpenctopn 12911  tcpt 12926   Σg cgsu 12928   mPwSer cmps 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-oprab 5926  df-mpo 5927  df-psr 14218
This theorem is referenced by:  psrelbas  14228  psradd  14231  psraddcl  14232
  Copyright terms: Public domain W3C validator