| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmpsr | GIF version | ||
| Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmpsr | ⊢ Rel dom mPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psr 14592 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
| 2 | 1 | reldmmpo 6087 | 1 ⊢ Rel dom mPwSer |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 {crab 2492 Vcvv 2779 ⦋csb 3104 ∪ cun 3175 {csn 3646 {ctp 3648 〈cop 3649 class class class wbr 4062 ↦ cmpt 4124 × cxp 4694 ◡ccnv 4695 dom cdm 4696 ↾ cres 4698 “ cima 4699 Rel wrel 4701 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 ∘𝑓 cof 6186 ∘𝑟 cofr 6187 ↑𝑚 cmap 6765 Fincfn 6857 ≤ cle 8150 − cmin 8285 ℕcn 9078 ℕ0cn0 9337 ndxcnx 12995 Basecbs 12998 +gcplusg 13076 .rcmulr 13077 Scalarcsca 13079 ·𝑠 cvsca 13080 TopSetcts 13082 TopOpenctopn 13239 ∏tcpt 13254 Σg cgsu 13256 mPwSer cmps 14590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-dm 4706 df-oprab 5978 df-mpo 5979 df-psr 14592 |
| This theorem is referenced by: psrelbas 14604 psradd 14608 psraddcl 14609 |
| Copyright terms: Public domain | W3C validator |