ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpl GIF version

Theorem fnmpl 14665
Description: mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
Assertion
Ref Expression
fnmpl mPoly Fn (V × V)

Proof of Theorem fnmpl
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑘 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mplcoe 14636 . 2 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
2 fnpsr 14639 . . . 4 mPwSer Fn (V × V)
3 vex 2802 . . . 4 𝑖 ∈ V
4 vex 2802 . . . 4 𝑟 ∈ V
5 fnovex 6040 . . . 4 (( mPwSer Fn (V × V) ∧ 𝑖 ∈ V ∧ 𝑟 ∈ V) → (𝑖 mPwSer 𝑟) ∈ V)
62, 3, 4, 5mp3an 1371 . . 3 (𝑖 mPwSer 𝑟) ∈ V
7 vex 2802 . . . 4 𝑤 ∈ V
8 basfn 13099 . . . . . 6 Base Fn V
9 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V)
109funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V)
118, 7, 10mp2an 426 . . . . 5 (Base‘𝑤) ∈ V
1211rabex 4228 . . . 4 {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} ∈ V
13 ressex 13106 . . . 4 ((𝑤 ∈ V ∧ {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} ∈ V) → (𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) ∈ V)
147, 12, 13mp2an 426 . . 3 (𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) ∈ V
156, 14csbexa 4213 . 2 (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) ∈ V
161, 15fnmpoi 6355 1 mPoly Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  csb 3124   class class class wbr 4083   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  𝑚 cmap 6803   < clt 8189  0cn0 9377  Basecbs 13040  s cress 13041  0gc0g 13297   mPwSer cmps 14633   mPoly cmpl 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-psr 14635  df-mplcoe 14636
This theorem is referenced by:  mplrcl  14666  mplbasss  14668  mplplusgg  14675  mpladd  14676
  Copyright terms: Public domain W3C validator