| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmpl | GIF version | ||
| Description: mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| fnmpl | ⊢ mPoly Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mplcoe 14470 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) | |
| 2 | fnpsr 14473 | . . . 4 ⊢ mPwSer Fn (V × V) | |
| 3 | vex 2776 | . . . 4 ⊢ 𝑖 ∈ V | |
| 4 | vex 2776 | . . . 4 ⊢ 𝑟 ∈ V | |
| 5 | fnovex 5984 | . . . 4 ⊢ (( mPwSer Fn (V × V) ∧ 𝑖 ∈ V ∧ 𝑟 ∈ V) → (𝑖 mPwSer 𝑟) ∈ V) | |
| 6 | 2, 3, 4, 5 | mp3an 1350 | . . 3 ⊢ (𝑖 mPwSer 𝑟) ∈ V |
| 7 | vex 2776 | . . . 4 ⊢ 𝑤 ∈ V | |
| 8 | basfn 12934 | . . . . . 6 ⊢ Base Fn V | |
| 9 | funfvex 5600 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑤 ∈ dom Base) → (Base‘𝑤) ∈ V) | |
| 10 | 9 | funfni 5381 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑤 ∈ V) → (Base‘𝑤) ∈ V) |
| 11 | 8, 7, 10 | mp2an 426 | . . . . 5 ⊢ (Base‘𝑤) ∈ V |
| 12 | 11 | rabex 4192 | . . . 4 ⊢ {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))} ∈ V |
| 13 | ressex 12941 | . . . 4 ⊢ ((𝑤 ∈ V ∧ {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))} ∈ V) → (𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) ∈ V) | |
| 14 | 7, 12, 13 | mp2an 426 | . . 3 ⊢ (𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) ∈ V |
| 15 | 6, 14 | csbexa 4177 | . 2 ⊢ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝑖)∀𝑏 ∈ (ℕ0 ↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) ∈ V |
| 16 | 1, 15 | fnmpoi 6296 | 1 ⊢ mPoly Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 {crab 2489 Vcvv 2773 ⦋csb 3094 class class class wbr 4047 × cxp 4677 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 < clt 8114 ℕ0cn0 9302 Basecbs 12876 ↾s cress 12877 0gc0g 13132 mPwSer cmps 14467 mPoly cmpl 14468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-map 6744 df-ixp 6793 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-tset 12972 df-rest 13117 df-topn 13118 df-topgen 13136 df-pt 13137 df-psr 14469 df-mplcoe 14470 |
| This theorem is referenced by: mplrcl 14500 mplbasss 14502 mplplusgg 14509 mpladd 14510 |
| Copyright terms: Public domain | W3C validator |