ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplvalcoe GIF version

Theorem mplvalcoe 14496
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplvalcoe.u 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
Assertion
Ref Expression
mplvalcoe ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑎,𝑏,𝑘,𝐼   𝑅,𝑓,𝑎,𝑏,𝑘   0 ,𝑓
Allowed substitution hints:   𝐵(𝑘,𝑎,𝑏)   𝑃(𝑓,𝑘,𝑎,𝑏)   𝑆(𝑓,𝑘,𝑎,𝑏)   𝑈(𝑓,𝑘,𝑎,𝑏)   𝑉(𝑓,𝑘,𝑎,𝑏)   𝑊(𝑓,𝑘,𝑎,𝑏)   0 (𝑘,𝑎,𝑏)

Proof of Theorem mplvalcoe
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 elex 2784 . . . 4 (𝐼𝑉𝐼 ∈ V)
32adantr 276 . . 3 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
4 elex 2784 . . . 4 (𝑅𝑊𝑅 ∈ V)
54adantl 277 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
6 mplval.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 fnpsr 14473 . . . . . . 7 mPwSer Fn (V × V)
87a1i 9 . . . . . 6 ((𝐼𝑉𝑅𝑊) → mPwSer Fn (V × V))
9 fnovex 5984 . . . . . 6 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
108, 3, 5, 9syl3anc 1250 . . . . 5 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
116, 10eqeltrid 2293 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
12 mplvalcoe.u . . . . 5 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
13 mplval.b . . . . . 6 𝐵 = (Base‘𝑆)
14 basfn 12934 . . . . . . 7 Base Fn V
15 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1615funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
1714, 11, 16sylancr 414 . . . . . 6 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
1813, 17eqeltrid 2293 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
1912, 18rabexd 4193 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑈 ∈ V)
20 ressex 12941 . . . 4 ((𝑆 ∈ V ∧ 𝑈 ∈ V) → (𝑆s 𝑈) ∈ V)
2111, 19, 20syl2anc 411 . . 3 ((𝐼𝑉𝑅𝑊) → (𝑆s 𝑈) ∈ V)
22 vex 2776 . . . . . . 7 𝑖 ∈ V
23 vex 2776 . . . . . . 7 𝑟 ∈ V
24 fnovex 5984 . . . . . . 7 (( mPwSer Fn (V × V) ∧ 𝑖 ∈ V ∧ 𝑟 ∈ V) → (𝑖 mPwSer 𝑟) ∈ V)
257, 22, 23, 24mp3an 1350 . . . . . 6 (𝑖 mPwSer 𝑟) ∈ V
2625a1i 9 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
27 id 19 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
28 oveq12 5960 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
2927, 28sylan9eqr 2261 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
3029, 6eqtr4di 2257 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
3130fveq2d 5587 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
3231, 13eqtr4di 2257 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
33 simpll 527 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑖 = 𝐼)
3433oveq2d 5967 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
3533raleqdv 2709 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘)))
36 simplr 528 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
3736fveq2d 5587 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
38 mplval.z . . . . . . . . . . . . 13 0 = (0g𝑅)
3937, 38eqtr4di 2257 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
4039eqeq2d 2218 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((𝑓𝑏) = (0g𝑟) ↔ (𝑓𝑏) = 0 ))
4135, 40imbi12d 234 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4234, 41raleqbidv 2719 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4334, 42rexeqbidv 2720 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4432, 43rabeqbidv 2768 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
4544, 12eqtr4di 2257 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = 𝑈)
4630, 45oveq12d 5969 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
4726, 46csbied 3141 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
48 df-mplcoe 14470 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
4947, 48ovmpoga 6082 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑆s 𝑈) ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
503, 5, 21, 49syl3anc 1250 . 2 ((𝐼𝑉𝑅𝑊) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
511, 50eqtrid 2251 1 ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  Vcvv 2773  csb 3094   class class class wbr 4047   × cxp 4677   Fn wfn 5271  cfv 5276  (class class class)co 5951  𝑚 cmap 6742   < clt 8114  0cn0 9302  Basecbs 12876  s cress 12877  0gc0g 13132   mPwSer cmps 14467   mPoly cmpl 14468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-i2m1 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-tset 12972  df-rest 13117  df-topn 13118  df-topgen 13136  df-pt 13137  df-psr 14469  df-mplcoe 14470
This theorem is referenced by:  mplbascoe  14497  mplval2g  14501
  Copyright terms: Public domain W3C validator