| Step | Hyp | Ref
| Expression |
| 1 | | mplval.p |
. 2
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | elex 2784 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
| 3 | 2 | adantr 276 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐼 ∈ V) |
| 4 | | elex 2784 |
. . . 4
⊢ (𝑅 ∈ 𝑊 → 𝑅 ∈ V) |
| 5 | 4 | adantl 277 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ V) |
| 6 | | mplval.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 7 | | fnpsr 14473 |
. . . . . . 7
⊢ mPwSer
Fn (V × V) |
| 8 | 7 | a1i 9 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → mPwSer Fn (V ×
V)) |
| 9 | | fnovex 5984 |
. . . . . 6
⊢ (( mPwSer
Fn (V × V) ∧ 𝐼
∈ V ∧ 𝑅 ∈ V)
→ (𝐼 mPwSer 𝑅) ∈ V) |
| 10 | 8, 3, 5, 9 | syl3anc 1250 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPwSer 𝑅) ∈ V) |
| 11 | 6, 10 | eqeltrid 2293 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 ∈ V) |
| 12 | | mplvalcoe.u |
. . . . 5
⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} |
| 13 | | mplval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑆) |
| 14 | | basfn 12934 |
. . . . . . 7
⊢ Base Fn
V |
| 15 | | funfvex 5600 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
| 16 | 15 | funfni 5381 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
| 17 | 14, 11, 16 | sylancr 414 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑆) ∈ V) |
| 18 | 13, 17 | eqeltrid 2293 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐵 ∈ V) |
| 19 | 12, 18 | rabexd 4193 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 ∈ V) |
| 20 | | ressex 12941 |
. . . 4
⊢ ((𝑆 ∈ V ∧ 𝑈 ∈ V) → (𝑆 ↾s 𝑈) ∈ V) |
| 21 | 11, 19, 20 | syl2anc 411 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑆 ↾s 𝑈) ∈ V) |
| 22 | | vex 2776 |
. . . . . . 7
⊢ 𝑖 ∈ V |
| 23 | | vex 2776 |
. . . . . . 7
⊢ 𝑟 ∈ V |
| 24 | | fnovex 5984 |
. . . . . . 7
⊢ (( mPwSer
Fn (V × V) ∧ 𝑖
∈ V ∧ 𝑟 ∈ V)
→ (𝑖 mPwSer 𝑟) ∈ V) |
| 25 | 7, 22, 23, 24 | mp3an 1350 |
. . . . . 6
⊢ (𝑖 mPwSer 𝑟) ∈ V |
| 26 | 25 | a1i 9 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V) |
| 27 | | id 19 |
. . . . . . . 8
⊢ (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟)) |
| 28 | | oveq12 5960 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅)) |
| 29 | 27, 28 | sylan9eqr 2261 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅)) |
| 30 | 29, 6 | eqtr4di 2257 |
. . . . . 6
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆) |
| 31 | 30 | fveq2d 5587 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆)) |
| 32 | 31, 13 | eqtr4di 2257 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵) |
| 33 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑖 = 𝐼) |
| 34 | 33 | oveq2d 5967 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) |
| 35 | 33 | raleqdv 2709 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) ↔ ∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘))) |
| 36 | | simplr 528 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅) |
| 37 | 36 | fveq2d 5587 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g‘𝑟) = (0g‘𝑅)) |
| 38 | | mplval.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑅) |
| 39 | 37, 38 | eqtr4di 2257 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g‘𝑟) = 0 ) |
| 40 | 39 | eqeq2d 2218 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((𝑓‘𝑏) = (0g‘𝑟) ↔ (𝑓‘𝑏) = 0 )) |
| 41 | 35, 40 | imbi12d 234 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) ↔ (∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 ))) |
| 42 | 34, 41 | raleqbidv 2719 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) ↔ ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 ))) |
| 43 | 34, 42 | rexeqbidv 2720 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟)) ↔ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 ))) |
| 44 | 32, 43 | rabeqbidv 2768 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))} = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) |
| 45 | 44, 12 | eqtr4di 2257 |
. . . . . 6
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))} = 𝑈) |
| 46 | 30, 45 | oveq12d 5969 |
. . . . 5
⊢ (((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) = (𝑆 ↾s 𝑈)) |
| 47 | 26, 46 | csbied 3141 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))}) = (𝑆 ↾s 𝑈)) |
| 48 | | df-mplcoe 14470 |
. . . 4
⊢ mPoly =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋(𝑖 mPwSer
𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0
↑𝑚 𝑖)∀𝑏 ∈ (ℕ0
↑𝑚 𝑖)(∀𝑘 ∈ 𝑖 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = (0g‘𝑟))})) |
| 49 | 47, 48 | ovmpoga 6082 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑆 ↾s 𝑈) ∈ V) → (𝐼 mPoly 𝑅) = (𝑆 ↾s 𝑈)) |
| 50 | 3, 5, 21, 49 | syl3anc 1250 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPoly 𝑅) = (𝑆 ↾s 𝑈)) |
| 51 | 1, 50 | eqtrid 2251 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) |