ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplvalcoe GIF version

Theorem mplvalcoe 14662
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplvalcoe.u 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
Assertion
Ref Expression
mplvalcoe ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑎,𝑏,𝑘,𝐼   𝑅,𝑓,𝑎,𝑏,𝑘   0 ,𝑓
Allowed substitution hints:   𝐵(𝑘,𝑎,𝑏)   𝑃(𝑓,𝑘,𝑎,𝑏)   𝑆(𝑓,𝑘,𝑎,𝑏)   𝑈(𝑓,𝑘,𝑎,𝑏)   𝑉(𝑓,𝑘,𝑎,𝑏)   𝑊(𝑓,𝑘,𝑎,𝑏)   0 (𝑘,𝑎,𝑏)

Proof of Theorem mplvalcoe
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 elex 2811 . . . 4 (𝐼𝑉𝐼 ∈ V)
32adantr 276 . . 3 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
4 elex 2811 . . . 4 (𝑅𝑊𝑅 ∈ V)
54adantl 277 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
6 mplval.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 fnpsr 14639 . . . . . . 7 mPwSer Fn (V × V)
87a1i 9 . . . . . 6 ((𝐼𝑉𝑅𝑊) → mPwSer Fn (V × V))
9 fnovex 6040 . . . . . 6 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
108, 3, 5, 9syl3anc 1271 . . . . 5 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
116, 10eqeltrid 2316 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
12 mplvalcoe.u . . . . 5 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
13 mplval.b . . . . . 6 𝐵 = (Base‘𝑆)
14 basfn 13099 . . . . . . 7 Base Fn V
15 funfvex 5646 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1615funfni 5423 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
1714, 11, 16sylancr 414 . . . . . 6 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
1813, 17eqeltrid 2316 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
1912, 18rabexd 4229 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑈 ∈ V)
20 ressex 13106 . . . 4 ((𝑆 ∈ V ∧ 𝑈 ∈ V) → (𝑆s 𝑈) ∈ V)
2111, 19, 20syl2anc 411 . . 3 ((𝐼𝑉𝑅𝑊) → (𝑆s 𝑈) ∈ V)
22 vex 2802 . . . . . . 7 𝑖 ∈ V
23 vex 2802 . . . . . . 7 𝑟 ∈ V
24 fnovex 6040 . . . . . . 7 (( mPwSer Fn (V × V) ∧ 𝑖 ∈ V ∧ 𝑟 ∈ V) → (𝑖 mPwSer 𝑟) ∈ V)
257, 22, 23, 24mp3an 1371 . . . . . 6 (𝑖 mPwSer 𝑟) ∈ V
2625a1i 9 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
27 id 19 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
28 oveq12 6016 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
2927, 28sylan9eqr 2284 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
3029, 6eqtr4di 2280 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
3130fveq2d 5633 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
3231, 13eqtr4di 2280 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
33 simpll 527 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑖 = 𝐼)
3433oveq2d 6023 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
3533raleqdv 2734 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘)))
36 simplr 528 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
3736fveq2d 5633 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
38 mplval.z . . . . . . . . . . . . 13 0 = (0g𝑅)
3937, 38eqtr4di 2280 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
4039eqeq2d 2241 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((𝑓𝑏) = (0g𝑟) ↔ (𝑓𝑏) = 0 ))
4135, 40imbi12d 234 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4234, 41raleqbidv 2744 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4334, 42rexeqbidv 2745 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4432, 43rabeqbidv 2794 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
4544, 12eqtr4di 2280 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = 𝑈)
4630, 45oveq12d 6025 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
4726, 46csbied 3171 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
48 df-mplcoe 14636 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
4947, 48ovmpoga 6140 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑆s 𝑈) ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
503, 5, 21, 49syl3anc 1271 . 2 ((𝐼𝑉𝑅𝑊) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
511, 50eqtrid 2274 1 ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  csb 3124   class class class wbr 4083   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  𝑚 cmap 6803   < clt 8189  0cn0 9377  Basecbs 13040  s cress 13041  0gc0g 13297   mPwSer cmps 14633   mPoly cmpl 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-psr 14635  df-mplcoe 14636
This theorem is referenced by:  mplbascoe  14663  mplval2g  14667
  Copyright terms: Public domain W3C validator