ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplvalcoe GIF version

Theorem mplvalcoe 14619
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplvalcoe.u 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
Assertion
Ref Expression
mplvalcoe ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑎,𝑏,𝑘,𝐼   𝑅,𝑓,𝑎,𝑏,𝑘   0 ,𝑓
Allowed substitution hints:   𝐵(𝑘,𝑎,𝑏)   𝑃(𝑓,𝑘,𝑎,𝑏)   𝑆(𝑓,𝑘,𝑎,𝑏)   𝑈(𝑓,𝑘,𝑎,𝑏)   𝑉(𝑓,𝑘,𝑎,𝑏)   𝑊(𝑓,𝑘,𝑎,𝑏)   0 (𝑘,𝑎,𝑏)

Proof of Theorem mplvalcoe
Dummy variables 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 elex 2791 . . . 4 (𝐼𝑉𝐼 ∈ V)
32adantr 276 . . 3 ((𝐼𝑉𝑅𝑊) → 𝐼 ∈ V)
4 elex 2791 . . . 4 (𝑅𝑊𝑅 ∈ V)
54adantl 277 . . 3 ((𝐼𝑉𝑅𝑊) → 𝑅 ∈ V)
6 mplval.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
7 fnpsr 14596 . . . . . . 7 mPwSer Fn (V × V)
87a1i 9 . . . . . 6 ((𝐼𝑉𝑅𝑊) → mPwSer Fn (V × V))
9 fnovex 6007 . . . . . 6 (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V)
108, 3, 5, 9syl3anc 1252 . . . . 5 ((𝐼𝑉𝑅𝑊) → (𝐼 mPwSer 𝑅) ∈ V)
116, 10eqeltrid 2296 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑆 ∈ V)
12 mplvalcoe.u . . . . 5 𝑈 = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )}
13 mplval.b . . . . . 6 𝐵 = (Base‘𝑆)
14 basfn 13057 . . . . . . 7 Base Fn V
15 funfvex 5620 . . . . . . . 8 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1615funfni 5399 . . . . . . 7 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
1714, 11, 16sylancr 414 . . . . . 6 ((𝐼𝑉𝑅𝑊) → (Base‘𝑆) ∈ V)
1813, 17eqeltrid 2296 . . . . 5 ((𝐼𝑉𝑅𝑊) → 𝐵 ∈ V)
1912, 18rabexd 4208 . . . 4 ((𝐼𝑉𝑅𝑊) → 𝑈 ∈ V)
20 ressex 13064 . . . 4 ((𝑆 ∈ V ∧ 𝑈 ∈ V) → (𝑆s 𝑈) ∈ V)
2111, 19, 20syl2anc 411 . . 3 ((𝐼𝑉𝑅𝑊) → (𝑆s 𝑈) ∈ V)
22 vex 2782 . . . . . . 7 𝑖 ∈ V
23 vex 2782 . . . . . . 7 𝑟 ∈ V
24 fnovex 6007 . . . . . . 7 (( mPwSer Fn (V × V) ∧ 𝑖 ∈ V ∧ 𝑟 ∈ V) → (𝑖 mPwSer 𝑟) ∈ V)
257, 22, 23, 24mp3an 1352 . . . . . 6 (𝑖 mPwSer 𝑟) ∈ V
2625a1i 9 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) ∈ V)
27 id 19 . . . . . . . 8 (𝑠 = (𝑖 mPwSer 𝑟) → 𝑠 = (𝑖 mPwSer 𝑟))
28 oveq12 5983 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
2927, 28sylan9eqr 2264 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = (𝐼 mPwSer 𝑅))
3029, 6eqtr4di 2260 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑠 = 𝑆)
3130fveq2d 5607 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = (Base‘𝑆))
3231, 13eqtr4di 2260 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (Base‘𝑠) = 𝐵)
33 simpll 527 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑖 = 𝐼)
3433oveq2d 5990 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
3533raleqdv 2714 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘)))
36 simplr 528 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → 𝑟 = 𝑅)
3736fveq2d 5607 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = (0g𝑅))
38 mplval.z . . . . . . . . . . . . 13 0 = (0g𝑅)
3937, 38eqtr4di 2260 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (0g𝑟) = 0 )
4039eqeq2d 2221 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((𝑓𝑏) = (0g𝑟) ↔ (𝑓𝑏) = 0 ))
4135, 40imbi12d 234 . . . . . . . . . 10 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → ((∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4234, 41raleqbidv 2724 . . . . . . . . 9 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4334, 42rexeqbidv 2725 . . . . . . . 8 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟)) ↔ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )))
4432, 43rabeqbidv 2774 . . . . . . 7 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = {𝑓𝐵 ∣ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = 0 )})
4544, 12eqtr4di 2260 . . . . . 6 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))} = 𝑈)
4630, 45oveq12d 5992 . . . . 5 (((𝑖 = 𝐼𝑟 = 𝑅) ∧ 𝑠 = (𝑖 mPwSer 𝑟)) → (𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
4726, 46csbied 3151 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}) = (𝑆s 𝑈))
48 df-mplcoe 14593 . . . 4 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ ∃𝑎 ∈ (ℕ0𝑚 𝑖)∀𝑏 ∈ (ℕ0𝑚 𝑖)(∀𝑘𝑖 (𝑎𝑘) < (𝑏𝑘) → (𝑓𝑏) = (0g𝑟))}))
4947, 48ovmpoga 6105 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑆s 𝑈) ∈ V) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
503, 5, 21, 49syl3anc 1252 . 2 ((𝐼𝑉𝑅𝑊) → (𝐼 mPoly 𝑅) = (𝑆s 𝑈))
511, 50eqtrid 2254 1 ((𝐼𝑉𝑅𝑊) → 𝑃 = (𝑆s 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  wrex 2489  {crab 2492  Vcvv 2779  csb 3104   class class class wbr 4062   × cxp 4694   Fn wfn 5289  cfv 5294  (class class class)co 5974  𝑚 cmap 6765   < clt 8149  0cn0 9337  Basecbs 12998  s cress 12999  0gc0g 13255   mPwSer cmps 14590   mPoly cmpl 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-tset 13095  df-rest 13240  df-topn 13241  df-topgen 13259  df-pt 13260  df-psr 14592  df-mplcoe 14593
This theorem is referenced by:  mplbascoe  14620  mplval2g  14624
  Copyright terms: Public domain W3C validator