| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oeiv | GIF version | ||
| Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.) |
| Ref | Expression |
|---|---|
| oeiv | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6569 | . . 3 ⊢ 1o ∈ On | |
| 2 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | omexg 6597 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·o 𝐴) ∈ V) | |
| 4 | 2, 3 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑥 ·o 𝐴) ∈ V) |
| 5 | 4 | ralrimivw 2604 | . . . . 5 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V) |
| 6 | eqid 2229 | . . . . . 6 ⊢ (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) | |
| 7 | 6 | fnmpt 5450 | . . . . 5 ⊢ (∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
| 8 | 5, 7 | syl 14 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
| 9 | rdgexggg 6523 | . . . 4 ⊢ (((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) | |
| 10 | 8, 9 | syl3an1 1304 | . . 3 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
| 11 | 1, 10 | mp3an2 1359 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
| 12 | oveq2 6009 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
| 13 | 12 | mpteq2dv 4175 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
| 14 | rdgeq1 6517 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
| 16 | 15 | fveq1d 5629 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
| 17 | fveq2 5627 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
| 18 | df-oexpi 6568 | . . 3 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) | |
| 19 | 16, 17, 18 | ovmpog 6139 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
| 20 | 11, 19 | mpd3an3 1372 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ↦ cmpt 4145 Oncon0 4454 Fn wfn 5313 ‘cfv 5318 (class class class)co 6001 reccrdg 6515 1oc1o 6555 ·o comu 6560 ↑o coei 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-oadd 6566 df-omul 6567 df-oexpi 6568 |
| This theorem is referenced by: oei0 6605 oeicl 6608 |
| Copyright terms: Public domain | W3C validator |