Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oeiv | GIF version |
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.) |
Ref | Expression |
---|---|
oeiv | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6402 | . . 3 ⊢ 1o ∈ On | |
2 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | omexg 6430 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·o 𝐴) ∈ V) | |
4 | 2, 3 | mpan 422 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑥 ·o 𝐴) ∈ V) |
5 | 4 | ralrimivw 2544 | . . . . 5 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V) |
6 | eqid 2170 | . . . . . 6 ⊢ (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) | |
7 | 6 | fnmpt 5324 | . . . . 5 ⊢ (∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
8 | 5, 7 | syl 14 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
9 | rdgexggg 6356 | . . . 4 ⊢ (((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) | |
10 | 8, 9 | syl3an1 1266 | . . 3 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
11 | 1, 10 | mp3an2 1320 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
12 | oveq2 5861 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
13 | 12 | mpteq2dv 4080 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
14 | rdgeq1 6350 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
16 | 15 | fveq1d 5498 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
17 | fveq2 5496 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
18 | df-oexpi 6401 | . . 3 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) | |
19 | 16, 17, 18 | ovmpog 5987 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
20 | 11, 19 | mpd3an3 1333 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ↦ cmpt 4050 Oncon0 4348 Fn wfn 5193 ‘cfv 5198 (class class class)co 5853 reccrdg 6348 1oc1o 6388 ·o comu 6393 ↑o coei 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-oexpi 6401 |
This theorem is referenced by: oei0 6438 oeicl 6441 |
Copyright terms: Public domain | W3C validator |