![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oeiv | GIF version |
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.) |
Ref | Expression |
---|---|
oeiv | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6476 | . . 3 ⊢ 1o ∈ On | |
2 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | omexg 6504 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·o 𝐴) ∈ V) | |
4 | 2, 3 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑥 ·o 𝐴) ∈ V) |
5 | 4 | ralrimivw 2568 | . . . . 5 ⊢ (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V) |
6 | eqid 2193 | . . . . . 6 ⊢ (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) | |
7 | 6 | fnmpt 5380 | . . . . 5 ⊢ (∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
8 | 5, 7 | syl 14 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V) |
9 | rdgexggg 6430 | . . . 4 ⊢ (((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) | |
10 | 8, 9 | syl3an1 1282 | . . 3 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
11 | 1, 10 | mp3an2 1336 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) |
12 | oveq2 5926 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴)) | |
13 | 12 | mpteq2dv 4120 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))) |
14 | rdgeq1 6424 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) | |
15 | 13, 14 | syl 14 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)) |
16 | 15 | fveq1d 5556 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧)) |
17 | fveq2 5554 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | |
18 | df-oexpi 6475 | . . 3 ⊢ ↑o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧)) | |
19 | 16, 17, 18 | ovmpog 6053 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
20 | 11, 19 | mpd3an3 1349 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ↦ cmpt 4090 Oncon0 4394 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 reccrdg 6422 1oc1o 6462 ·o comu 6467 ↑o coei 6468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-oexpi 6475 |
This theorem is referenced by: oei0 6512 oeicl 6515 |
Copyright terms: Public domain | W3C validator |