ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv GIF version

Theorem oeiv 6432
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oeiv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6399 . . 3 1o ∈ On
2 vex 2733 . . . . . . 7 𝑥 ∈ V
3 omexg 6427 . . . . . . 7 ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·o 𝐴) ∈ V)
42, 3mpan 422 . . . . . 6 (𝐴 ∈ On → (𝑥 ·o 𝐴) ∈ V)
54ralrimivw 2544 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V)
6 eqid 2170 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
76fnmpt 5322 . . . . 5 (∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V)
85, 7syl 14 . . . 4 (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V)
9 rdgexggg 6353 . . . 4 (((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
108, 9syl3an1 1266 . . 3 ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
111, 10mp3an2 1320 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
12 oveq2 5858 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴))
1312mpteq2dv 4078 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)))
14 rdgeq1 6347 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
1513, 14syl 14 . . . 4 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
1615fveq1d 5496 . . 3 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))
17 fveq2 5494 . . 3 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
18 df-oexpi 6398 . . 3 o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧))
1916, 17, 18ovmpog 5984 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
2011, 19mpd3an3 1333 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  cmpt 4048  Oncon0 4346   Fn wfn 5191  cfv 5196  (class class class)co 5850  reccrdg 6345  1oc1o 6385   ·o comu 6390  o coei 6391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-oexpi 6398
This theorem is referenced by:  oei0  6435  oeicl  6438
  Copyright terms: Public domain W3C validator