ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv GIF version

Theorem oeiv 6424
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oeiv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6391 . . 3 1o ∈ On
2 vex 2729 . . . . . . 7 𝑥 ∈ V
3 omexg 6419 . . . . . . 7 ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·o 𝐴) ∈ V)
42, 3mpan 421 . . . . . 6 (𝐴 ∈ On → (𝑥 ·o 𝐴) ∈ V)
54ralrimivw 2540 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V)
6 eqid 2165 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴))
76fnmpt 5314 . . . . 5 (∀𝑥 ∈ V (𝑥 ·o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V)
85, 7syl 14 . . . 4 (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V)
9 rdgexggg 6345 . . . 4 (((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) Fn V ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
108, 9syl3an1 1261 . . 3 ((𝐴 ∈ On ∧ 1o ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
111, 10mp3an2 1315 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V)
12 oveq2 5850 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ·o 𝑦) = (𝑥 ·o 𝐴))
1312mpteq2dv 4073 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)))
14 rdgeq1 6339 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
1513, 14syl 14 . . . 4 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o) = rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o))
1615fveq1d 5488 . . 3 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧))
17 fveq2 5486 . . 3 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
18 df-oexpi 6390 . . 3 o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝑦)), 1o)‘𝑧))
1916, 17, 18ovmpog 5976 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∈ V) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
2011, 19mpd3an3 1328 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  cmpt 4043  Oncon0 4341   Fn wfn 5183  cfv 5188  (class class class)co 5842  reccrdg 6337  1oc1o 6377   ·o comu 6382  o coei 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-oexpi 6390
This theorem is referenced by:  oei0  6427  oeicl  6430
  Copyright terms: Public domain W3C validator