| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 1on | ⊢ 1o ∈ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-1o 6474 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4427 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4552 | . 2 ⊢ suc ∅ ∈ On | 
| 4 | 1, 3 | eqeltri 2269 | 1 ⊢ 1o ∈ On | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∅c0 3450 Oncon0 4398 suc csuc 4400 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: 1oex 6482 2on 6483 2on0 6484 2oconcl 6497 fnoei 6510 oeiexg 6511 oeiv 6514 oei0 6517 oeicl 6520 o1p1e2 6526 oawordriexmid 6528 enpr2d 6876 endisj 6883 snexxph 7016 djuex 7109 1stinr 7142 2ndinr 7143 pm54.43 7257 xpdjuen 7285 prarloclemarch2 7486 bj-el2oss1o 15420 nnsf 15649 | 
| Copyright terms: Public domain | W3C validator |