| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6515 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4447 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4572 | . 2 ⊢ suc ∅ ∈ On |
| 4 | 1, 3 | eqeltri 2279 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∅c0 3464 Oncon0 4418 suc csuc 4420 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: 1oex 6523 2on 6524 2on0 6525 2oconcl 6538 fnoei 6551 oeiexg 6552 oeiv 6555 oei0 6558 oeicl 6561 o1p1e2 6567 oawordriexmid 6569 enpr2d 6925 endisj 6934 snexxph 7067 djuex 7160 1stinr 7193 2ndinr 7194 pm54.43 7313 xpdjuen 7346 prarloclemarch2 7552 bj-el2oss1o 15849 nnsf 16083 |
| Copyright terms: Public domain | W3C validator |