| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6483 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4428 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4553 | . 2 ⊢ suc ∅ ∈ On |
| 4 | 1, 3 | eqeltri 2269 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∅c0 3451 Oncon0 4399 suc csuc 4401 1oc1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-1o 6483 |
| This theorem is referenced by: 1oex 6491 2on 6492 2on0 6493 2oconcl 6506 fnoei 6519 oeiexg 6520 oeiv 6523 oei0 6526 oeicl 6529 o1p1e2 6535 oawordriexmid 6537 enpr2d 6885 endisj 6892 snexxph 7025 djuex 7118 1stinr 7151 2ndinr 7152 pm54.43 7269 xpdjuen 7301 prarloclemarch2 7503 bj-el2oss1o 15504 nnsf 15736 |
| Copyright terms: Public domain | W3C validator |