| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6560 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4482 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4607 | . 2 ⊢ suc ∅ ∈ On |
| 4 | 1, 3 | eqeltri 2302 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∅c0 3491 Oncon0 4453 suc csuc 4455 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: 1oex 6568 2on 6569 2on0 6570 2oconcl 6583 fnoei 6596 oeiexg 6597 oeiv 6600 oei0 6603 oeicl 6606 o1p1e2 6612 oawordriexmid 6614 enpr2d 6970 endisj 6979 snexxph 7113 djuex 7206 1stinr 7239 2ndinr 7240 pm54.43 7359 xpdjuen 7396 prarloclemarch2 7602 bj-el2oss1o 16096 nnsf 16330 |
| Copyright terms: Public domain | W3C validator |