![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1on | GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6471 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 4424 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 4549 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2266 | 1 ⊢ 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∅c0 3447 Oncon0 4395 suc csuc 4397 1oc1o 6464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 |
This theorem is referenced by: 1oex 6479 2on 6480 2on0 6481 2oconcl 6494 fnoei 6507 oeiexg 6508 oeiv 6511 oei0 6514 oeicl 6517 o1p1e2 6523 oawordriexmid 6525 enpr2d 6873 endisj 6880 snexxph 7011 djuex 7104 1stinr 7137 2ndinr 7138 pm54.43 7252 xpdjuen 7280 prarloclemarch2 7481 bj-el2oss1o 15336 nnsf 15565 |
Copyright terms: Public domain | W3C validator |