| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6501 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4438 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4563 | . 2 ⊢ suc ∅ ∈ On |
| 4 | 1, 3 | eqeltri 2277 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∅c0 3459 Oncon0 4409 suc csuc 4411 1oc1o 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 df-1o 6501 |
| This theorem is referenced by: 1oex 6509 2on 6510 2on0 6511 2oconcl 6524 fnoei 6537 oeiexg 6538 oeiv 6541 oei0 6544 oeicl 6547 o1p1e2 6553 oawordriexmid 6555 enpr2d 6910 endisj 6918 snexxph 7051 djuex 7144 1stinr 7177 2ndinr 7178 pm54.43 7297 xpdjuen 7329 prarloclemarch2 7531 bj-el2oss1o 15643 nnsf 15875 |
| Copyright terms: Public domain | W3C validator |