![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1on | GIF version |
Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1on | ⊢ 1o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6469 | . 2 ⊢ 1o = suc ∅ | |
2 | 0elon 4423 | . . 3 ⊢ ∅ ∈ On | |
3 | 2 | onsuci 4548 | . 2 ⊢ suc ∅ ∈ On |
4 | 1, 3 | eqeltri 2266 | 1 ⊢ 1o ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∅c0 3446 Oncon0 4394 suc csuc 4396 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 |
This theorem is referenced by: 1oex 6477 2on 6478 2on0 6479 2oconcl 6492 fnoei 6505 oeiexg 6506 oeiv 6509 oei0 6512 oeicl 6515 o1p1e2 6521 oawordriexmid 6523 enpr2d 6871 endisj 6878 snexxph 7009 djuex 7102 1stinr 7135 2ndinr 7136 pm54.43 7250 xpdjuen 7278 prarloclemarch2 7479 bj-el2oss1o 15266 nnsf 15495 |
Copyright terms: Public domain | W3C validator |