| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1on | GIF version | ||
| Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1on | ⊢ 1o ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6492 | . 2 ⊢ 1o = suc ∅ | |
| 2 | 0elon 4437 | . . 3 ⊢ ∅ ∈ On | |
| 3 | 2 | onsuci 4562 | . 2 ⊢ suc ∅ ∈ On |
| 4 | 1, 3 | eqeltri 2277 | 1 ⊢ 1o ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∅c0 3459 Oncon0 4408 suc csuc 4410 1oc1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4411 df-on 4413 df-suc 4416 df-1o 6492 |
| This theorem is referenced by: 1oex 6500 2on 6501 2on0 6502 2oconcl 6515 fnoei 6528 oeiexg 6529 oeiv 6532 oei0 6535 oeicl 6538 o1p1e2 6544 oawordriexmid 6546 enpr2d 6894 endisj 6901 snexxph 7034 djuex 7127 1stinr 7160 2ndinr 7161 pm54.43 7280 xpdjuen 7312 prarloclemarch2 7514 bj-el2oss1o 15574 nnsf 15806 |
| Copyright terms: Public domain | W3C validator |