| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oeiexg | GIF version | ||
| Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| oeiexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 2 | 1on 6481 | . . . . . 6 ⊢ 1o ∈ On | |
| 3 | 2 | elexi 2775 | . . . . 5 ⊢ 1o ∈ V | 
| 4 | vex 2766 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 5 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 6 | omexg 6509 | . . . . . . 7 ⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·o 𝑥) ∈ V) | |
| 7 | 4, 5, 6 | mp2an 426 | . . . . . 6 ⊢ (𝑧 ·o 𝑥) ∈ V | 
| 8 | eqid 2196 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) | |
| 9 | 7, 8 | fnmpti 5386 | . . . . 5 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) Fn V | 
| 10 | 3, 9 | rdgexg 6447 | . . . 4 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V) | 
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V | 
| 12 | 11 | gen2 1464 | . 2 ⊢ ∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V | 
| 13 | df-oexpi 6480 | . . 3 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) | |
| 14 | 13 | mpofvex 6263 | . 2 ⊢ ((∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) | 
| 15 | 12, 14 | mp3an1 1335 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 Oncon0 4398 ‘cfv 5258 (class class class)co 5922 reccrdg 6427 1oc1o 6467 ·o comu 6472 ↑o coei 6473 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-oexpi 6480 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |