ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiexg GIF version

Theorem oeiexg 6520
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oeiexg ((𝐴𝑉𝐵𝑊) → (𝐴o 𝐵) ∈ V)

Proof of Theorem oeiexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4 𝑦 ∈ V
2 1on 6490 . . . . . 6 1o ∈ On
32elexi 2775 . . . . 5 1o ∈ V
4 vex 2766 . . . . . . 7 𝑧 ∈ V
5 vex 2766 . . . . . . 7 𝑥 ∈ V
6 omexg 6518 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·o 𝑥) ∈ V)
74, 5, 6mp2an 426 . . . . . 6 (𝑧 ·o 𝑥) ∈ V
8 eqid 2196 . . . . . 6 (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·o 𝑥))
97, 8fnmpti 5389 . . . . 5 (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) Fn V
103, 9rdgexg 6456 . . . 4 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V)
111, 10ax-mp 5 . . 3 (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V
1211gen2 1464 . 2 𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V
13 df-oexpi 6489 . . 3 o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
1413mpofvex 6272 . 2 ((∀𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V ∧ 𝐴𝑉𝐵𝑊) → (𝐴o 𝐵) ∈ V)
1512, 14mp3an1 1335 1 ((𝐴𝑉𝐵𝑊) → (𝐴o 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wcel 2167  Vcvv 2763  cmpt 4095  Oncon0 4399  cfv 5259  (class class class)co 5925  reccrdg 6436  1oc1o 6476   ·o comu 6481  o coei 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-oexpi 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator