![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oeiexg | GIF version |
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
oeiexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | 1on 6414 | . . . . . 6 ⊢ 1o ∈ On | |
3 | 2 | elexi 2747 | . . . . 5 ⊢ 1o ∈ V |
4 | vex 2738 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
5 | vex 2738 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | omexg 6442 | . . . . . . 7 ⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·o 𝑥) ∈ V) | |
7 | 4, 5, 6 | mp2an 426 | . . . . . 6 ⊢ (𝑧 ·o 𝑥) ∈ V |
8 | eqid 2175 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) | |
9 | 7, 8 | fnmpti 5336 | . . . . 5 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) Fn V |
10 | 3, 9 | rdgexg 6380 | . . . 4 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V) |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V |
12 | 11 | gen2 1448 | . 2 ⊢ ∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V |
13 | df-oexpi 6413 | . . 3 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) | |
14 | 13 | mpofvex 6194 | . 2 ⊢ ((∀𝑥∀𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) |
15 | 12, 14 | mp3an1 1324 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑o 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∈ wcel 2146 Vcvv 2735 ↦ cmpt 4059 Oncon0 4357 ‘cfv 5208 (class class class)co 5865 reccrdg 6360 1oc1o 6400 ·o comu 6405 ↑o coei 6406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-oadd 6411 df-omul 6412 df-oexpi 6413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |