| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnoei | GIF version | ||
| Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fnoei | ⊢ ↑o Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oexpi 6566 | . 2 ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)) | |
| 2 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | 1on 6567 | . . . . 5 ⊢ 1o ∈ On | |
| 4 | 3 | elexi 2812 | . . . 4 ⊢ 1o ∈ V |
| 5 | vex 2802 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 6 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | omexg 6595 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·o 𝑥) ∈ V) | |
| 8 | 5, 6, 7 | mp2an 426 | . . . . 5 ⊢ (𝑧 ·o 𝑥) ∈ V |
| 9 | eqid 2229 | . . . . 5 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) | |
| 10 | 8, 9 | fnmpti 5451 | . . . 4 ⊢ (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) Fn V |
| 11 | 4, 10 | rdgexg 6533 | . . 3 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V) |
| 12 | 2, 11 | ax-mp 5 | . 2 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V |
| 13 | 1, 12 | fnmpoi 6347 | 1 ⊢ ↑o Fn (On × On) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4144 Oncon0 4453 × cxp 4716 Fn wfn 5312 ‘cfv 5317 (class class class)co 6000 reccrdg 6513 1oc1o 6553 ·o comu 6558 ↑o coei 6559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-oexpi 6566 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |