ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnoei GIF version

Theorem fnoei 6537
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnoei o Fn (On × On)

Proof of Theorem fnoei
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oexpi 6507 . 2 o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))
2 vex 2774 . . 3 𝑦 ∈ V
3 1on 6508 . . . . 5 1o ∈ On
43elexi 2783 . . . 4 1o ∈ V
5 vex 2774 . . . . . 6 𝑧 ∈ V
6 vex 2774 . . . . . 6 𝑥 ∈ V
7 omexg 6536 . . . . . 6 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·o 𝑥) ∈ V)
85, 6, 7mp2an 426 . . . . 5 (𝑧 ·o 𝑥) ∈ V
9 eqid 2204 . . . . 5 (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·o 𝑥))
108, 9fnmpti 5403 . . . 4 (𝑧 ∈ V ↦ (𝑧 ·o 𝑥)) Fn V
114, 10rdgexg 6474 . . 3 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V)
122, 11ax-mp 5 . 2 (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦) ∈ V
131, 12fnmpoi 6288 1 o Fn (On × On)
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771  cmpt 4104  Oncon0 4409   × cxp 4672   Fn wfn 5265  cfv 5270  (class class class)co 5943  reccrdg 6454  1oc1o 6494   ·o comu 6499  o coei 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-oexpi 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator