![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ress | GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range,
defining a function using the base set and applying that, or explicitly
truncating the slot before use.
(Credit for this operator goes to Mario Carneiro.) (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 11742 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 2641 | . . 3 class V | |
5 | 2 | cv 1298 | . . . . . 6 class 𝑤 |
6 | cbs 11741 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 5059 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1298 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3021 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 11738 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 5059 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3020 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 3477 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 11739 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 5706 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 3421 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpo 5708 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1299 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff set class |
This definition is referenced by: reldmress 11799 ressid2 11800 ressval2 11801 |
Copyright terms: Public domain | W3C validator |