Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ress | GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range,
defining a function using the base set and applying that, or explicitly
truncating the slot before use.
(Credit for this operator goes to Mario Carneiro.) (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 12395 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 2726 | . . 3 class V | |
5 | 2 | cv 1342 | . . . . . 6 class 𝑤 |
6 | cbs 12394 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 5188 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1342 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3116 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 12391 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 5188 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3115 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 3579 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 12392 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 5842 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 3520 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpo 5844 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1343 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff set class |
This definition is referenced by: reldmress 12453 ressid2 12454 ressval2 12455 |
Copyright terms: Public domain | W3C validator |