ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ress Unicode version

Definition df-ress 12402
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 12395 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2726 . . 3  class  _V
52cv 1342 . . . . . 6  class  w
6 cbs 12394 . . . . . 6  class  Base
75, 6cfv 5188 . . . . 5  class  ( Base `  w )
83cv 1342 . . . . 5  class  x
97, 8wss 3116 . . . 4  wff  ( Base `  w )  C_  x
10 cnx 12391 . . . . . . 7  class  ndx
1110, 6cfv 5188 . . . . . 6  class  ( Base `  ndx )
128, 7cin 3115 . . . . . 6  class  ( x  i^i  ( Base `  w
) )
1311, 12cop 3579 . . . . 5  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
14 csts 12392 . . . . 5  class sSet
155, 13, 14co 5842 . . . 4  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
169, 5, 15cif 3520 . . 3  class  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
172, 3, 4, 4, 16cmpo 5844 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
181, 17wceq 1343 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  12453  ressid2  12454  ressval2  12455
  Copyright terms: Public domain W3C validator