ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ress Unicode version

Definition df-ress 12424
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 12417 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2730 . . 3  class  _V
52cv 1347 . . . . . 6  class  w
6 cbs 12416 . . . . . 6  class  Base
75, 6cfv 5198 . . . . 5  class  ( Base `  w )
83cv 1347 . . . . 5  class  x
97, 8wss 3121 . . . 4  wff  ( Base `  w )  C_  x
10 cnx 12413 . . . . . . 7  class  ndx
1110, 6cfv 5198 . . . . . 6  class  ( Base `  ndx )
128, 7cin 3120 . . . . . 6  class  ( x  i^i  ( Base `  w
) )
1311, 12cop 3586 . . . . 5  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
14 csts 12414 . . . . 5  class sSet
155, 13, 14co 5853 . . . 4  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
169, 5, 15cif 3526 . . 3  class  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
172, 3, 4, 4, 16cmpo 5855 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
181, 17wceq 1348 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  12476  ressid2  12477  ressval2  12478
  Copyright terms: Public domain W3C validator