ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ress Unicode version

Definition df-ress 12417
Description: Define a multifunction restriction operator for extensible structures, which can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the  Base set while leaving operators alone; individual kinds of structures will need to handle this behavior, by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

(Credit for this operator goes to Mario Carneiro.)

(Contributed by Stefan O'Rear, 29-Nov-2014.)

Assertion
Ref Expression
df-ress  |-s  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Distinct variable group:    x, w

Detailed syntax breakdown of Definition df-ress
StepHypRef Expression
1 cress 12410 . 2  classs
2 vw . . 3  setvar  w
3 vx . . 3  setvar  x
4 cvv 2730 . . 3  class  _V
52cv 1347 . . . . . 6  class  w
6 cbs 12409 . . . . . 6  class  Base
75, 6cfv 5196 . . . . 5  class  ( Base `  w )
83cv 1347 . . . . 5  class  x
97, 8wss 3121 . . . 4  wff  ( Base `  w )  C_  x
10 cnx 12406 . . . . . . 7  class  ndx
1110, 6cfv 5196 . . . . . 6  class  ( Base `  ndx )
128, 7cin 3120 . . . . . 6  class  ( x  i^i  ( Base `  w
) )
1311, 12cop 3584 . . . . 5  class  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>.
14 csts 12407 . . . . 5  class sSet
155, 13, 14co 5851 . . . 4  class  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w
) ) >. )
169, 5, 15cif 3525 . . 3  class  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) )
172, 3, 4, 4, 16cmpo 5853 . 2  class  ( w  e.  _V ,  x  e.  _V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
181, 17wceq 1348 1  wffs  =  ( w  e.  _V ,  x  e. 
_V  |->  if ( (
Base `  w )  C_  x ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
Colors of variables: wff set class
This definition is referenced by:  reldmress  12469  ressid2  12470  ressval2  12471
  Copyright terms: Public domain W3C validator