ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 GIF version

Theorem ressval2 11608
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressval2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))

Proof of Theorem ressval2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 945 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2633 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 946 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2633 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 944 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → ¬ 𝐵𝐴)
76iffalsed 3407 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
8 basendxnn 11603 . . . . . . 7 (Base‘ndx) ∈ ℕ
98a1i 9 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
10 inex1g 3981 . . . . . . 7 (𝐴𝑌 → (𝐴𝐵) ∈ V)
114, 10syl 14 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝐴𝐵) ∈ V)
12 setsex 11580 . . . . . 6 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴𝐵) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
132, 9, 11, 12syl3anc 1175 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
147, 13eqeltrd 2165 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
15 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
1615fveq2d 5322 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
17 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1816, 17syl6eqr 2139 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
19 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
2018, 19sseq12d 3056 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
2119, 18ineq12d 3203 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
2221opeq2d 3635 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2315, 22oveq12d 5684 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
2420, 15, 23ifbieq12d 3421 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
25 df-ress 11556 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2624, 25ovmpt2ga 5788 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
273, 5, 14, 26syl3anc 1175 . . 3 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2827, 7eqtrd 2121 . 2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
291, 28syl5eq 2133 1 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 925   = wceq 1290  wcel 1439  Vcvv 2620  cin 2999  wss 3000  ifcif 3397  cop 3453  cfv 5028  (class class class)co 5666  cn 8476  ndxcnx 11545   sSet csts 11546  Basecbs 11548  s cress 11549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1re 7493  ax-addrcl 7496
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-iota 4993  df-fun 5030  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-inn 8477  df-ndx 11551  df-slot 11552  df-base 11554  df-sets 11555  df-ress 11556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator