ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 GIF version

Theorem ressval2 12478
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressval2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))

Proof of Theorem ressval2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 993 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2743 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 994 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2743 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 992 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → ¬ 𝐵𝐴)
76iffalsed 3536 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
8 basendxnn 12471 . . . . . . 7 (Base‘ndx) ∈ ℕ
98a1i 9 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
10 inex1g 4125 . . . . . . 7 (𝐴𝑌 → (𝐴𝐵) ∈ V)
114, 10syl 14 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝐴𝐵) ∈ V)
12 setsex 12448 . . . . . 6 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴𝐵) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
132, 9, 11, 12syl3anc 1233 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
147, 13eqeltrd 2247 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
15 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
1615fveq2d 5500 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
17 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1816, 17eqtr4di 2221 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
19 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
2018, 19sseq12d 3178 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
2119, 18ineq12d 3329 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
2221opeq2d 3772 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2315, 22oveq12d 5871 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
2420, 15, 23ifbieq12d 3552 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
25 df-ress 12424 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2624, 25ovmpoga 5982 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
273, 5, 14, 26syl3anc 1233 . . 3 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2827, 7eqtrd 2203 . 2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
291, 28eqtrid 2215 1 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730  cin 3120  wss 3121  ifcif 3526  cop 3586  cfv 5198  (class class class)co 5853  cn 8878  ndxcnx 12413   sSet csts 12414  Basecbs 12416  s cress 12417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-sets 12423  df-ress 12424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator