| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressval2 | GIF version | ||
| Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressval2 | ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressvalsets 12981 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | |
| 2 | ressbas.r | . . 3 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | ressbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 4 | 3 | ineq2i 3375 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ (Base‘𝑊)) |
| 5 | 4 | opeq2i 3832 | . . . 4 ⊢ 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉 = 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 |
| 6 | 5 | oveq2i 5973 | . . 3 ⊢ (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) |
| 7 | 1, 2, 6 | 3eqtr4g 2264 | . 2 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| 8 | 7 | 3adant1 1018 | 1 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∩ cin 3169 ⊆ wss 3170 〈cop 3641 ‘cfv 5285 (class class class)co 5962 ndxcnx 12914 sSet csts 12915 Basecbs 12917 ↾s cress 12918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-inn 9067 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |