Step | Hyp | Ref
| Expression |
1 | | ressbas.r |
. 2
⊢ 𝑅 = (𝑊 ↾s 𝐴) |
2 | | simp2 988 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ 𝑋) |
3 | 2 | elexd 2739 |
. . . 4
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑊 ∈ V) |
4 | | simp3 989 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ 𝑌) |
5 | 4 | elexd 2739 |
. . . 4
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝐴 ∈ V) |
6 | | simp1 987 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → ¬ 𝐵 ⊆ 𝐴) |
7 | 6 | iffalsed 3530 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
8 | | basendxnn 12449 |
. . . . . . 7
⊢
(Base‘ndx) ∈ ℕ |
9 | 8 | a1i 9 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (Base‘ndx) ∈
ℕ) |
10 | | inex1g 4118 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑌 → (𝐴 ∩ 𝐵) ∈ V) |
11 | 4, 10 | syl 14 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝐴 ∩ 𝐵) ∈ V) |
12 | | setsex 12426 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘ndx) ∈ ℕ ∧
(𝐴 ∩ 𝐵) ∈ V) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉) ∈ V) |
13 | 2, 9, 11, 12 | syl3anc 1228 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉) ∈ V) |
14 | 7, 13 | eqeltrd 2243 |
. . . 4
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) ∈ V) |
15 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → 𝑤 = 𝑊) |
16 | 15 | fveq2d 5490 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊)) |
17 | | ressbas.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
18 | 16, 17 | eqtr4di 2217 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → (Base‘𝑤) = 𝐵) |
19 | | simpr 109 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) |
20 | 18, 19 | sseq12d 3173 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎 ↔ 𝐵 ⊆ 𝐴)) |
21 | 19, 18 | ineq12d 3324 |
. . . . . . . 8
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴 ∩ 𝐵)) |
22 | 21 | opeq2d 3765 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉 =
〈(Base‘ndx), (𝐴
∩ 𝐵)〉) |
23 | 15, 22 | oveq12d 5860 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
24 | 20, 15, 23 | ifbieq12d 3546 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉)) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
25 | | df-ress 12402 |
. . . . 5
⊢
↾s = (𝑤
∈ V, 𝑎 ∈ V
↦ if((Base‘𝑤)
⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) |
26 | 24, 25 | ovmpoga 5971 |
. . . 4
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) ∈ V) → (𝑊 ↾s 𝐴) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
27 | 3, 5, 14, 26 | syl3anc 1228 |
. . 3
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
28 | 27, 7 | eqtrd 2198 |
. 2
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
29 | 1, 28 | syl5eq 2211 |
1
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |