ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 GIF version

Theorem ressval2 12058
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressval2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))

Proof of Theorem ressval2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 983 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2702 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 984 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2702 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 982 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → ¬ 𝐵𝐴)
76iffalsed 3489 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
8 basendxnn 12053 . . . . . . 7 (Base‘ndx) ∈ ℕ
98a1i 9 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (Base‘ndx) ∈ ℕ)
10 inex1g 4072 . . . . . . 7 (𝐴𝑌 → (𝐴𝐵) ∈ V)
114, 10syl 14 . . . . . 6 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝐴𝐵) ∈ V)
12 setsex 12030 . . . . . 6 ((𝑊𝑋 ∧ (Base‘ndx) ∈ ℕ ∧ (𝐴𝐵) ∈ V) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
132, 9, 11, 12syl3anc 1217 . . . . 5 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) ∈ V)
147, 13eqeltrd 2217 . . . 4 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
15 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
1615fveq2d 5433 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
17 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1816, 17eqtr4di 2191 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
19 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
2018, 19sseq12d 3133 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
2119, 18ineq12d 3283 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
2221opeq2d 3720 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
2315, 22oveq12d 5800 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
2420, 15, 23ifbieq12d 3503 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
25 df-ress 12006 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2624, 25ovmpoga 5908 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
273, 5, 14, 26syl3anc 1217 . . 3 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2827, 7eqtrd 2173 . 2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
291, 28syl5eq 2185 1 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  Vcvv 2689  cin 3075  wss 3076  ifcif 3479  cop 3535  cfv 5131  (class class class)co 5782  cn 8744  ndxcnx 11995   sSet csts 11996  Basecbs 11998  s cress 11999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-inn 8745  df-ndx 12001  df-slot 12002  df-base 12004  df-sets 12005  df-ress 12006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator