ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 GIF version

Theorem ressval2 12983
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressval2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))

Proof of Theorem ressval2
StepHypRef Expression
1 ressvalsets 12981 . . 3 ((𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
2 ressbas.r . . 3 𝑅 = (𝑊s 𝐴)
3 ressbas.b . . . . . 6 𝐵 = (Base‘𝑊)
43ineq2i 3375 . . . . 5 (𝐴𝐵) = (𝐴 ∩ (Base‘𝑊))
54opeq2i 3832 . . . 4 ⟨(Base‘ndx), (𝐴𝐵)⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩
65oveq2i 5973 . . 3 (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)
71, 2, 63eqtr4g 2264 . 2 ((𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
873adant1 1018 1 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cin 3169  wss 3170  cop 3641  cfv 5285  (class class class)co 5962  ndxcnx 12914   sSet csts 12915  Basecbs 12917  s cress 12918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-inn 9067  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator