![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressval2 | GIF version |
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressbas.r | β’ π = (π βΎs π΄) |
ressbas.b | β’ π΅ = (Baseβπ) |
Ref | Expression |
---|---|
ressval2 | β’ ((Β¬ π΅ β π΄ β§ π β π β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© π΅)β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressvalsets 12526 | . . 3 β’ ((π β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) | |
2 | ressbas.r | . . 3 β’ π = (π βΎs π΄) | |
3 | ressbas.b | . . . . . 6 β’ π΅ = (Baseβπ) | |
4 | 3 | ineq2i 3335 | . . . . 5 β’ (π΄ β© π΅) = (π΄ β© (Baseβπ)) |
5 | 4 | opeq2i 3784 | . . . 4 β’ β¨(Baseβndx), (π΄ β© π΅)β© = β¨(Baseβndx), (π΄ β© (Baseβπ))β© |
6 | 5 | oveq2i 5888 | . . 3 β’ (π sSet β¨(Baseβndx), (π΄ β© π΅)β©) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©) |
7 | 1, 2, 6 | 3eqtr4g 2235 | . 2 β’ ((π β π β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© π΅)β©)) |
8 | 7 | 3adant1 1015 | 1 β’ ((Β¬ π΅ β π΄ β§ π β π β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© π΅)β©)) |
Colors of variables: wff set class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 β© cin 3130 β wss 3131 β¨cop 3597 βcfv 5218 (class class class)co 5877 ndxcnx 12461 sSet csts 12462 Basecbs 12464 βΎs cress 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |