ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressid2 GIF version

Theorem ressid2 12345
Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem ressid2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 983 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2725 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 984 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2725 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 982 . . . . . 6 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐵𝐴)
76iftrued 3513 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = 𝑊)
87, 3eqeltrd 2234 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
9 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
109fveq2d 5475 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
11 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2208 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
13 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
1412, 13sseq12d 3159 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
1513, 12ineq12d 3310 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
1615opeq2d 3750 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
179, 16oveq12d 5845 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1814, 9, 17ifbieq12d 3532 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
19 df-ress 12294 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2018, 19ovmpoga 5953 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
213, 5, 8, 20syl3anc 1220 . . 3 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2221, 7eqtrd 2190 . 2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = 𝑊)
231, 22syl5eq 2202 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  Vcvv 2712  cin 3101  wss 3102  ifcif 3506  cop 3564  cfv 5173  (class class class)co 5827  ndxcnx 12283   sSet csts 12284  Basecbs 12286  s cress 12287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-setind 4499
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4029  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-iota 5138  df-fun 5175  df-fv 5181  df-ov 5830  df-oprab 5831  df-mpo 5832  df-ress 12294
This theorem is referenced by:  ressid  12347
  Copyright terms: Public domain W3C validator