ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressid2 GIF version

Theorem ressid2 12057
Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem ressid2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 983 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2702 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 984 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2702 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 982 . . . . . 6 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐵𝐴)
76iftrued 3486 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = 𝑊)
87, 3eqeltrd 2217 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
9 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
109fveq2d 5433 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
11 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2191 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
13 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
1412, 13sseq12d 3133 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
1513, 12ineq12d 3283 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
1615opeq2d 3720 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
179, 16oveq12d 5800 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1814, 9, 17ifbieq12d 3503 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
19 df-ress 12006 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2018, 19ovmpoga 5908 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
213, 5, 8, 20syl3anc 1217 . . 3 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2221, 7eqtrd 2173 . 2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = 𝑊)
231, 22syl5eq 2185 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  Vcvv 2689  cin 3075  wss 3076  ifcif 3479  cop 3535  cfv 5131  (class class class)co 5782  ndxcnx 11995   sSet csts 11996  Basecbs 11998  s cress 11999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-ress 12006
This theorem is referenced by:  ressid  12059
  Copyright terms: Public domain W3C validator