ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressid2 GIF version

Theorem ressid2 12007
Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem ressid2
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (𝑊s 𝐴)
2 simp2 982 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊𝑋)
32elexd 2694 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑊 ∈ V)
4 simp3 983 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴𝑌)
54elexd 2694 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐴 ∈ V)
6 simp1 981 . . . . . 6 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝐵𝐴)
76iftrued 3476 . . . . 5 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = 𝑊)
87, 3eqeltrd 2214 . . . 4 ((𝐵𝐴𝑊𝑋𝐴𝑌) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V)
9 simpl 108 . . . . . . . . 9 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑤 = 𝑊)
109fveq2d 5418 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
11 ressbas.b . . . . . . . 8 𝐵 = (Base‘𝑊)
1210, 11syl6eqr 2188 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
13 simpr 109 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → 𝑎 = 𝐴)
1412, 13sseq12d 3123 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → ((Base‘𝑤) ⊆ 𝑎𝐵𝐴))
1513, 12ineq12d 3273 . . . . . . . 8 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑎 ∩ (Base‘𝑤)) = (𝐴𝐵))
1615opeq2d 3707 . . . . . . 7 ((𝑤 = 𝑊𝑎 = 𝐴) → ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩ = ⟨(Base‘ndx), (𝐴𝐵)⟩)
179, 16oveq12d 5785 . . . . . 6 ((𝑤 = 𝑊𝑎 = 𝐴) → (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1814, 9, 17ifbieq12d 3493 . . . . 5 ((𝑤 = 𝑊𝑎 = 𝐴) → if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
19 df-ress 11956 . . . . 5 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
2018, 19ovmpoga 5893 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) ∈ V) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
213, 5, 8, 20syl3anc 1216 . . 3 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
2221, 7eqtrd 2170 . 2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → (𝑊s 𝐴) = 𝑊)
231, 22syl5eq 2182 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  Vcvv 2681  cin 3065  wss 3066  ifcif 3469  cop 3525  cfv 5118  (class class class)co 5767  ndxcnx 11945   sSet csts 11946  Basecbs 11948  s cress 11949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-ress 11956
This theorem is referenced by:  ressid  12009
  Copyright terms: Public domain W3C validator