| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-tpos | GIF version | ||
| Description: Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| df-tpos | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cF | . . 3 class 𝐹 | |
| 2 | 1 | ctpos 6302 | . 2 class tpos 𝐹 |
| 3 | vx | . . . 4 setvar 𝑥 | |
| 4 | 1 | cdm 4663 | . . . . . 6 class dom 𝐹 |
| 5 | 4 | ccnv 4662 | . . . . 5 class ◡dom 𝐹 |
| 6 | c0 3450 | . . . . . 6 class ∅ | |
| 7 | 6 | csn 3622 | . . . . 5 class {∅} |
| 8 | 5, 7 | cun 3155 | . . . 4 class (◡dom 𝐹 ∪ {∅}) |
| 9 | 3 | cv 1363 | . . . . . . 7 class 𝑥 |
| 10 | 9 | csn 3622 | . . . . . 6 class {𝑥} |
| 11 | 10 | ccnv 4662 | . . . . 5 class ◡{𝑥} |
| 12 | 11 | cuni 3839 | . . . 4 class ∪ ◡{𝑥} |
| 13 | 3, 8, 12 | cmpt 4094 | . . 3 class (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 14 | 1, 13 | ccom 4667 | . 2 class (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | wceq 1364 | 1 wff tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| Colors of variables: wff set class |
| This definition is referenced by: tposss 6304 tposssxp 6307 brtpos2 6309 tposfun 6318 dftpos2 6319 dftpos4 6321 |
| Copyright terms: Public domain | W3C validator |