| Step | Hyp | Ref
| Expression |
| 1 | | reltpos 6317 |
. . . 4
⊢ Rel tpos
𝐹 |
| 2 | 1 | brrelex1i 4707 |
. . 3
⊢ (𝐴tpos 𝐹𝐵 → 𝐴 ∈ V) |
| 3 | 2 | a1i 9 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 → 𝐴 ∈ V)) |
| 4 | | elex 2774 |
. . . 4
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → 𝐴 ∈ V) |
| 5 | 4 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ V) |
| 6 | 5 | a1i 9 |
. 2
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ V)) |
| 7 | | df-tpos 6312 |
. . . . . 6
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 8 | 7 | breqi 4040 |
. . . . 5
⊢ (𝐴tpos 𝐹𝐵 ↔ 𝐴(𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))𝐵) |
| 9 | | brcog 4834 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵))) |
| 10 | 8, 9 | bitrid 192 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵))) |
| 11 | | funmpt 5297 |
. . . . . . . . . . 11
⊢ Fun
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 12 | | funbrfv2b 5608 |
. . . . . . . . . . 11
⊢ (Fun
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) → (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦))) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦)) |
| 14 | | vex 2766 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 15 | | snexg 4218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ V → {𝑥} ∈ V) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥} ∈ V |
| 17 | 16 | cnvex 5209 |
. . . . . . . . . . . . . . 15
⊢ ◡{𝑥} ∈ V |
| 18 | 17 | uniex 4473 |
. . . . . . . . . . . . . 14
⊢ ∪ ◡{𝑥} ∈ V |
| 19 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 20 | 18, 19 | dmmpti 5390 |
. . . . . . . . . . . . 13
⊢ dom
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (◡dom 𝐹 ∪ {∅}) |
| 21 | 20 | eleq2i 2263 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↔ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 22 | | eqcom 2198 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦 ↔ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴)) |
| 23 | 21, 22 | anbi12i 460 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴))) |
| 24 | | snexg 4218 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → {𝐴} ∈ V) |
| 25 | | cnvexg 5208 |
. . . . . . . . . . . . . . . 16
⊢ ({𝐴} ∈ V → ◡{𝐴} ∈ V) |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ◡{𝐴} ∈ V) |
| 27 | | uniexg 4475 |
. . . . . . . . . . . . . . 15
⊢ (◡{𝐴} ∈ V → ∪ ◡{𝐴} ∈ V) |
| 28 | 26, 27 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ∪ ◡{𝐴} ∈ V) |
| 29 | | sneq 3634 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
| 30 | 29 | cnveqd 4843 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ◡{𝑥} = ◡{𝐴}) |
| 31 | 30 | unieqd 3851 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → ∪ ◡{𝑥} = ∪ ◡{𝐴}) |
| 32 | 31, 19 | fvmptg 5640 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴} ∈ V) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = ∪ ◡{𝐴}) |
| 33 | 28, 32 | mpdan 421 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = ∪ ◡{𝐴}) |
| 34 | 33 | eqeq2d 2208 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) ↔ 𝑦 = ∪ ◡{𝐴})) |
| 35 | 34 | pm5.32i 454 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
| 36 | 23, 35 | bitri 184 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
| 37 | 13, 36 | bitri 184 |
. . . . . . . . 9
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
| 38 | | ancom 266 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴}) ↔ (𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 39 | 37, 38 | bitri 184 |
. . . . . . . 8
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 40 | 39 | anbi1i 458 |
. . . . . . 7
⊢ ((𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ ((𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵)) |
| 41 | | anass 401 |
. . . . . . 7
⊢ (((𝑦 = ∪
◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
| 42 | 40, 41 | bitri 184 |
. . . . . 6
⊢ ((𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ (𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
| 43 | 42 | exbii 1619 |
. . . . 5
⊢
(∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
| 44 | | exsimpr 1632 |
. . . . . . 7
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → ∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) |
| 45 | | exsimpl 1631 |
. . . . . . . 8
⊢
(∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → ∃𝑦 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 46 | | 19.9v 1885 |
. . . . . . . 8
⊢
(∃𝑦 𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ↔ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 47 | 45, 46 | sylib 122 |
. . . . . . 7
⊢
(∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 48 | 44, 47 | syl 14 |
. . . . . 6
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 49 | | simpl 109 |
. . . . . 6
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
| 50 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑦 = ∪
◡{𝐴} → (𝑦𝐹𝐵 ↔ ∪ ◡{𝐴}𝐹𝐵)) |
| 51 | 50 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑦 = ∪
◡{𝐴} → ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
| 52 | 51 | ceqsexgv 2893 |
. . . . . . 7
⊢ (∪ ◡{𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
| 53 | 28, 52 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → (∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
| 54 | 48, 49, 53 | pm5.21nii 705 |
. . . . 5
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)) |
| 55 | 43, 54 | bitri 184 |
. . . 4
⊢
(∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)) |
| 56 | 10, 55 | bitrdi 196 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
| 57 | 56 | expcom 116 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)))) |
| 58 | 3, 6, 57 | pm5.21ndd 706 |
1
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |