ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 GIF version

Theorem brtpos2 6254
Description: Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Proof of Theorem brtpos2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6253 . . . 4 Rel tpos 𝐹
21brrelex1i 4671 . . 3 (𝐴tpos 𝐹𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵𝐴 ∈ V))
4 elex 2750 . . . 4 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → 𝐴 ∈ V)
54adantr 276 . . 3 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V)
65a1i 9 . 2 (𝐵𝑉 → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V))
7 df-tpos 6248 . . . . . 6 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
87breqi 4011 . . . . 5 (𝐴tpos 𝐹𝐵𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵)
9 brcog 4796 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
108, 9bitrid 192 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
11 funmpt 5256 . . . . . . . . . . 11 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
12 funbrfv2b 5562 . . . . . . . . . . 11 (Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) → (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦)))
1311, 12ax-mp 5 . . . . . . . . . 10 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦))
14 vex 2742 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
15 snexg 4186 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → {𝑥} ∈ V)
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
1716cnvex 5169 . . . . . . . . . . . . . . 15 {𝑥} ∈ V
1817uniex 4439 . . . . . . . . . . . . . 14 {𝑥} ∈ V
19 eqid 2177 . . . . . . . . . . . . . 14 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2018, 19dmmpti 5347 . . . . . . . . . . . . 13 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (dom 𝐹 ∪ {∅})
2120eleq2i 2244 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
22 eqcom 2179 . . . . . . . . . . . 12 (((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴))
2321, 22anbi12i 460 . . . . . . . . . . 11 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)))
24 snexg 4186 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
25 cnvexg 5168 . . . . . . . . . . . . . . . 16 ({𝐴} ∈ V → {𝐴} ∈ V)
2624, 25syl 14 . . . . . . . . . . . . . . 15 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
27 uniexg 4441 . . . . . . . . . . . . . . 15 ({𝐴} ∈ V → {𝐴} ∈ V)
2826, 27syl 14 . . . . . . . . . . . . . 14 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
29 sneq 3605 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {𝑥} = {𝐴})
3029cnveqd 4805 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴{𝑥} = {𝐴})
3130unieqd 3822 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 {𝑥} = {𝐴})
3231, 19fvmptg 5594 . . . . . . . . . . . . . 14 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴} ∈ V) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3328, 32mpdan 421 . . . . . . . . . . . . 13 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3433eqeq2d 2189 . . . . . . . . . . . 12 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) ↔ 𝑦 = {𝐴}))
3534pm5.32i 454 . . . . . . . . . . 11 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3623, 35bitri 184 . . . . . . . . . 10 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3713, 36bitri 184 . . . . . . . . 9 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
38 ancom 266 . . . . . . . . 9 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}) ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3937, 38bitri 184 . . . . . . . 8 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
4039anbi1i 458 . . . . . . 7 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵))
41 anass 401 . . . . . . 7 (((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4240, 41bitri 184 . . . . . 6 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4342exbii 1605 . . . . 5 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
44 exsimpr 1618 . . . . . . 7 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → ∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))
45 exsimpl 1617 . . . . . . . 8 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → ∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}))
46 19.9v 1871 . . . . . . . 8 (∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4745, 46sylib 122 . . . . . . 7 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4844, 47syl 14 . . . . . 6 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
49 simpl 109 . . . . . 6 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
50 breq1 4008 . . . . . . . . 9 (𝑦 = {𝐴} → (𝑦𝐹𝐵 {𝐴}𝐹𝐵))
5150anbi2d 464 . . . . . . . 8 (𝑦 = {𝐴} → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5251ceqsexgv 2868 . . . . . . 7 ( {𝐴} ∈ V → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5328, 52syl 14 . . . . . 6 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5448, 49, 53pm5.21nii 704 . . . . 5 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5543, 54bitri 184 . . . 4 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5610, 55bitrdi 196 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5756expcom 116 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))))
583, 6, 57pm5.21ndd 705 1 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739  cun 3129  c0 3424  {csn 3594   cuni 3811   class class class wbr 4005  cmpt 4066  ccnv 4627  dom cdm 4628  ccom 4632  Fun wfun 5212  cfv 5218  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-tpos 6248
This theorem is referenced by:  brtpos0  6255  reldmtpos  6256  brtposg  6257  dftpos4  6266  tpostpos  6267
  Copyright terms: Public domain W3C validator