ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 GIF version

Theorem brtpos2 6318
Description: Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Proof of Theorem brtpos2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6317 . . . 4 Rel tpos 𝐹
21brrelex1i 4707 . . 3 (𝐴tpos 𝐹𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵𝐴 ∈ V))
4 elex 2774 . . . 4 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → 𝐴 ∈ V)
54adantr 276 . . 3 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V)
65a1i 9 . 2 (𝐵𝑉 → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V))
7 df-tpos 6312 . . . . . 6 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
87breqi 4040 . . . . 5 (𝐴tpos 𝐹𝐵𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵)
9 brcog 4834 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
108, 9bitrid 192 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
11 funmpt 5297 . . . . . . . . . . 11 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
12 funbrfv2b 5608 . . . . . . . . . . 11 (Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) → (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦)))
1311, 12ax-mp 5 . . . . . . . . . 10 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦))
14 vex 2766 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
15 snexg 4218 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → {𝑥} ∈ V)
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
1716cnvex 5209 . . . . . . . . . . . . . . 15 {𝑥} ∈ V
1817uniex 4473 . . . . . . . . . . . . . 14 {𝑥} ∈ V
19 eqid 2196 . . . . . . . . . . . . . 14 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2018, 19dmmpti 5390 . . . . . . . . . . . . 13 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (dom 𝐹 ∪ {∅})
2120eleq2i 2263 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
22 eqcom 2198 . . . . . . . . . . . 12 (((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴))
2321, 22anbi12i 460 . . . . . . . . . . 11 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)))
24 snexg 4218 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
25 cnvexg 5208 . . . . . . . . . . . . . . . 16 ({𝐴} ∈ V → {𝐴} ∈ V)
2624, 25syl 14 . . . . . . . . . . . . . . 15 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
27 uniexg 4475 . . . . . . . . . . . . . . 15 ({𝐴} ∈ V → {𝐴} ∈ V)
2826, 27syl 14 . . . . . . . . . . . . . 14 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
29 sneq 3634 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {𝑥} = {𝐴})
3029cnveqd 4843 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴{𝑥} = {𝐴})
3130unieqd 3851 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 {𝑥} = {𝐴})
3231, 19fvmptg 5640 . . . . . . . . . . . . . 14 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴} ∈ V) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3328, 32mpdan 421 . . . . . . . . . . . . 13 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3433eqeq2d 2208 . . . . . . . . . . . 12 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) ↔ 𝑦 = {𝐴}))
3534pm5.32i 454 . . . . . . . . . . 11 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3623, 35bitri 184 . . . . . . . . . 10 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3713, 36bitri 184 . . . . . . . . 9 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
38 ancom 266 . . . . . . . . 9 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}) ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3937, 38bitri 184 . . . . . . . 8 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
4039anbi1i 458 . . . . . . 7 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵))
41 anass 401 . . . . . . 7 (((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4240, 41bitri 184 . . . . . 6 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4342exbii 1619 . . . . 5 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
44 exsimpr 1632 . . . . . . 7 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → ∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))
45 exsimpl 1631 . . . . . . . 8 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → ∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}))
46 19.9v 1885 . . . . . . . 8 (∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4745, 46sylib 122 . . . . . . 7 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4844, 47syl 14 . . . . . 6 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
49 simpl 109 . . . . . 6 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
50 breq1 4037 . . . . . . . . 9 (𝑦 = {𝐴} → (𝑦𝐹𝐵 {𝐴}𝐹𝐵))
5150anbi2d 464 . . . . . . . 8 (𝑦 = {𝐴} → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5251ceqsexgv 2893 . . . . . . 7 ( {𝐴} ∈ V → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5328, 52syl 14 . . . . . 6 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5448, 49, 53pm5.21nii 705 . . . . 5 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5543, 54bitri 184 . . . 4 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5610, 55bitrdi 196 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5756expcom 116 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))))
583, 6, 57pm5.21ndd 706 1 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cun 3155  c0 3451  {csn 3623   cuni 3840   class class class wbr 4034  cmpt 4095  ccnv 4663  dom cdm 4664  ccom 4668  Fun wfun 5253  cfv 5259  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-tpos 6312
This theorem is referenced by:  brtpos0  6319  reldmtpos  6320  brtposg  6321  dftpos4  6330  tpostpos  6331
  Copyright terms: Public domain W3C validator