Step | Hyp | Ref
| Expression |
1 | | reltpos 6218 |
. . . 4
⊢ Rel tpos
𝐹 |
2 | 1 | brrelex1i 4647 |
. . 3
⊢ (𝐴tpos 𝐹𝐵 → 𝐴 ∈ V) |
3 | 2 | a1i 9 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 → 𝐴 ∈ V)) |
4 | | elex 2737 |
. . . 4
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → 𝐴 ∈ V) |
5 | 4 | adantr 274 |
. . 3
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ V) |
6 | 5 | a1i 9 |
. 2
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ V)) |
7 | | df-tpos 6213 |
. . . . . 6
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
8 | 7 | breqi 3988 |
. . . . 5
⊢ (𝐴tpos 𝐹𝐵 ↔ 𝐴(𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))𝐵) |
9 | | brcog 4771 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵))) |
10 | 8, 9 | syl5bb 191 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵))) |
11 | | funmpt 5226 |
. . . . . . . . . . 11
⊢ Fun
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
12 | | funbrfv2b 5531 |
. . . . . . . . . . 11
⊢ (Fun
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) → (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦))) |
13 | 11, 12 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦)) |
14 | | vex 2729 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
15 | | snexg 4163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ V → {𝑥} ∈ V) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥} ∈ V |
17 | 16 | cnvex 5142 |
. . . . . . . . . . . . . . 15
⊢ ◡{𝑥} ∈ V |
18 | 17 | uniex 4415 |
. . . . . . . . . . . . . 14
⊢ ∪ ◡{𝑥} ∈ V |
19 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
20 | 18, 19 | dmmpti 5317 |
. . . . . . . . . . . . 13
⊢ dom
(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (◡dom 𝐹 ∪ {∅}) |
21 | 20 | eleq2i 2233 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↔ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
22 | | eqcom 2167 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦 ↔ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴)) |
23 | 21, 22 | anbi12i 456 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴))) |
24 | | snexg 4163 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → {𝐴} ∈ V) |
25 | | cnvexg 5141 |
. . . . . . . . . . . . . . . 16
⊢ ({𝐴} ∈ V → ◡{𝐴} ∈ V) |
26 | 24, 25 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ◡{𝐴} ∈ V) |
27 | | uniexg 4417 |
. . . . . . . . . . . . . . 15
⊢ (◡{𝐴} ∈ V → ∪ ◡{𝐴} ∈ V) |
28 | 26, 27 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ∪ ◡{𝐴} ∈ V) |
29 | | sneq 3587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
30 | 29 | cnveqd 4780 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ◡{𝑥} = ◡{𝐴}) |
31 | 30 | unieqd 3800 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → ∪ ◡{𝑥} = ∪ ◡{𝐴}) |
32 | 31, 19 | fvmptg 5562 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴} ∈ V) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = ∪ ◡{𝐴}) |
33 | 28, 32 | mpdan 418 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = ∪ ◡{𝐴}) |
34 | 33 | eqeq2d 2177 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) ↔ 𝑦 = ∪ ◡{𝐴})) |
35 | 34 | pm5.32i 450 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
36 | 23, 35 | bitri 183 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ∧ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
37 | 13, 36 | bitri 183 |
. . . . . . . . 9
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴})) |
38 | | ancom 264 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦 = ∪ ◡{𝐴}) ↔ (𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅}))) |
39 | 37, 38 | bitri 183 |
. . . . . . . 8
⊢ (𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ↔ (𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅}))) |
40 | 39 | anbi1i 454 |
. . . . . . 7
⊢ ((𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ ((𝑦 = ∪ ◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵)) |
41 | | anass 399 |
. . . . . . 7
⊢ (((𝑦 = ∪
◡{𝐴} ∧ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
42 | 40, 41 | bitri 183 |
. . . . . 6
⊢ ((𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ (𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
43 | 42 | exbii 1593 |
. . . . 5
⊢
(∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))) |
44 | | exsimpr 1606 |
. . . . . . 7
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → ∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) |
45 | | exsimpl 1605 |
. . . . . . . 8
⊢
(∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → ∃𝑦 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
46 | | 19.9v 1859 |
. . . . . . . 8
⊢
(∃𝑦 𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ↔ 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
47 | 45, 46 | sylib 121 |
. . . . . . 7
⊢
(∃𝑦(𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
48 | 44, 47 | syl 14 |
. . . . . 6
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
49 | | simpl 108 |
. . . . . 6
⊢ ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵) → 𝐴 ∈ (◡dom 𝐹 ∪ {∅})) |
50 | | breq1 3985 |
. . . . . . . . 9
⊢ (𝑦 = ∪
◡{𝐴} → (𝑦𝐹𝐵 ↔ ∪ ◡{𝐴}𝐹𝐵)) |
51 | 50 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑦 = ∪
◡{𝐴} → ((𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
52 | 51 | ceqsexgv 2855 |
. . . . . . 7
⊢ (∪ ◡{𝐴} ∈ V → (∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
53 | 28, 52 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) → (∃𝑦(𝑦 = ∪ ◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
54 | 48, 49, 53 | pm5.21nii 694 |
. . . . 5
⊢
(∃𝑦(𝑦 = ∪
◡{𝐴} ∧ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)) |
55 | 43, 54 | bitri 183 |
. . . 4
⊢
(∃𝑦(𝐴(𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})𝑦 ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)) |
56 | 10, 55 | bitrdi 195 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |
57 | 56 | expcom 115 |
. 2
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵)))) |
58 | 3, 6, 57 | pm5.21ndd 695 |
1
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) |