ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos2 GIF version

Theorem brtpos2 6078
Description: Value of the transposition at a pair 𝐴, 𝐵. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Proof of Theorem brtpos2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6077 . . . 4 Rel tpos 𝐹
21brrelex1i 4520 . . 3 (𝐴tpos 𝐹𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵𝐴 ∈ V))
4 elex 2652 . . . 4 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → 𝐴 ∈ V)
54adantr 272 . . 3 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V)
65a1i 9 . 2 (𝐵𝑉 → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V))
7 df-tpos 6072 . . . . . 6 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
87breqi 3881 . . . . 5 (𝐴tpos 𝐹𝐵𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵)
9 brcog 4644 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
108, 9syl5bb 191 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
11 funmpt 5097 . . . . . . . . . . 11 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
12 funbrfv2b 5398 . . . . . . . . . . 11 (Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) → (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦)))
1311, 12ax-mp 7 . . . . . . . . . 10 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦))
14 vex 2644 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
15 snexg 4048 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ V → {𝑥} ∈ V)
1614, 15ax-mp 7 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
1716cnvex 5013 . . . . . . . . . . . . . . 15 {𝑥} ∈ V
1817uniex 4297 . . . . . . . . . . . . . 14 {𝑥} ∈ V
19 eqid 2100 . . . . . . . . . . . . . 14 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2018, 19dmmpti 5188 . . . . . . . . . . . . 13 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (dom 𝐹 ∪ {∅})
2120eleq2i 2166 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
22 eqcom 2102 . . . . . . . . . . . 12 (((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴))
2321, 22anbi12i 451 . . . . . . . . . . 11 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)))
24 snexg 4048 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
25 cnvexg 5012 . . . . . . . . . . . . . . . 16 ({𝐴} ∈ V → {𝐴} ∈ V)
2624, 25syl 14 . . . . . . . . . . . . . . 15 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
27 uniexg 4299 . . . . . . . . . . . . . . 15 ({𝐴} ∈ V → {𝐴} ∈ V)
2826, 27syl 14 . . . . . . . . . . . . . 14 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → {𝐴} ∈ V)
29 sneq 3485 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {𝑥} = {𝐴})
3029cnveqd 4653 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴{𝑥} = {𝐴})
3130unieqd 3694 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 {𝑥} = {𝐴})
3231, 19fvmptg 5429 . . . . . . . . . . . . . 14 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴} ∈ V) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3328, 32mpdan 415 . . . . . . . . . . . . 13 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
3433eqeq2d 2111 . . . . . . . . . . . 12 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) ↔ 𝑦 = {𝐴}))
3534pm5.32i 445 . . . . . . . . . . 11 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3623, 35bitri 183 . . . . . . . . . 10 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3713, 36bitri 183 . . . . . . . . 9 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
38 ancom 264 . . . . . . . . 9 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}) ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3937, 38bitri 183 . . . . . . . 8 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
4039anbi1i 449 . . . . . . 7 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵))
41 anass 396 . . . . . . 7 (((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4240, 41bitri 183 . . . . . 6 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
4342exbii 1552 . . . . 5 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
44 exsimpr 1565 . . . . . . 7 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → ∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵))
45 exsimpl 1564 . . . . . . . 8 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → ∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}))
46 19.9v 1810 . . . . . . . 8 (∃𝑦 𝐴 ∈ (dom 𝐹 ∪ {∅}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4745, 46sylib 121 . . . . . . 7 (∃𝑦(𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
4844, 47syl 14 . . . . . 6 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
49 simpl 108 . . . . . 6 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ (dom 𝐹 ∪ {∅}))
50 breq1 3878 . . . . . . . . 9 (𝑦 = {𝐴} → (𝑦𝐹𝐵 {𝐴}𝐹𝐵))
5150anbi2d 455 . . . . . . . 8 (𝑦 = {𝐴} → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5251ceqsexgv 2768 . . . . . . 7 ( {𝐴} ∈ V → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5328, 52syl 14 . . . . . 6 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5448, 49, 53pm5.21nii 661 . . . . 5 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5543, 54bitri 183 . . . 4 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
5610, 55syl6bb 195 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
5756expcom 115 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))))
583, 6, 57pm5.21ndd 662 1 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wex 1436  wcel 1448  Vcvv 2641  cun 3019  c0 3310  {csn 3474   cuni 3683   class class class wbr 3875  cmpt 3929  ccnv 4476  dom cdm 4477  ccom 4481  Fun wfun 5053  cfv 5059  tpos ctpos 6071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-fv 5067  df-tpos 6072
This theorem is referenced by:  brtpos0  6079  reldmtpos  6080  brtposg  6081  dftpos4  6090  tpostpos  6091
  Copyright terms: Public domain W3C validator