HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfmpo 6201* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝐢 ∈ 𝐷 ↔ 𝐹:(𝐴 Γ— 𝐡)⟢𝐷)
 
Theoremfnmpo 6202* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝐢 ∈ 𝑉 β†’ 𝐹 Fn (𝐴 Γ— 𝐡))
 
Theoremmpofvex 6203* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   ((βˆ€π‘₯βˆ€π‘¦ 𝐢 ∈ 𝑉 ∧ 𝑅 ∈ π‘Š ∧ 𝑆 ∈ 𝑋) β†’ (𝑅𝐹𝑆) ∈ V)
 
Theoremfnmpoi 6204* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   πΆ ∈ V    β‡’   πΉ Fn (𝐴 Γ— 𝐡)
 
Theoremdmmpo 6205* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   πΆ ∈ V    β‡’   dom 𝐹 = (𝐴 Γ— 𝐡)
 
Theoremmpofvexi 6206* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   πΆ ∈ V    &   π‘… ∈ V    &   π‘† ∈ V    β‡’   (𝑅𝐹𝑆) ∈ V
 
Theoremovmpoelrn 6207* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
𝑂 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝐢 ∈ 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐡) β†’ (π‘‹π‘‚π‘Œ) ∈ 𝑀)
 
Theoremdmmpoga 6208* Domain of an operation given by the maps-to notation, closed form of dmmpo 6205. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝐢 ∈ 𝑉 β†’ dom 𝐹 = (𝐴 Γ— 𝐡))
 
Theoremdmmpog 6209* Domain of an operation given by the maps-to notation, closed form of dmmpo 6205. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   (𝐢 ∈ 𝑉 β†’ dom 𝐹 = (𝐴 Γ— 𝐡))
 
Theoremmpoexxg 6210* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   ((𝐴 ∈ 𝑅 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑆) β†’ 𝐹 ∈ V)
 
Theoremmpoexg 6211* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   ((𝐴 ∈ 𝑅 ∧ 𝐡 ∈ 𝑆) β†’ 𝐹 ∈ V)
 
Theoremmpoexga 6212* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) ∈ V)
 
Theoremmpoexw 6213* Weak version of mpoex 6214 that holds without ax-coll 4118. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
𝐴 ∈ V    &   π΅ ∈ V    &   π· ∈ V    &   βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝐢 ∈ 𝐷    β‡’   (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) ∈ V
 
Theoremmpoex 6214* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
𝐴 ∈ V    &   π΅ ∈ V    β‡’   (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) ∈ V
 
Theoremfnmpoovd 6215* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
(πœ‘ β†’ 𝑀 Fn (𝐴 Γ— 𝐡))    &   ((𝑖 = π‘Ž ∧ 𝑗 = 𝑏) β†’ 𝐷 = 𝐢)    &   ((πœ‘ ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐡) β†’ 𝐷 ∈ π‘ˆ)    &   ((πœ‘ ∧ π‘Ž ∈ 𝐴 ∧ 𝑏 ∈ 𝐡) β†’ 𝐢 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑀 = (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐡 ↦ 𝐢) ↔ βˆ€π‘– ∈ 𝐴 βˆ€π‘— ∈ 𝐡 (𝑖𝑀𝑗) = 𝐷))
 
Theoremfmpoco 6216* Composition of two functions. Variation of fmptco 5682 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ 𝑅 ∈ 𝐢)    &   (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝑅))    &   (πœ‘ β†’ 𝐺 = (𝑧 ∈ 𝐢 ↦ 𝑆))    &   (𝑧 = 𝑅 β†’ 𝑆 = 𝑇)    β‡’   (πœ‘ β†’ (𝐺 ∘ 𝐹) = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝑇))
 
Theoremoprabco 6217* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) β†’ 𝐢 ∈ 𝐷)    &   πΉ = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   πΊ = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ (π»β€˜πΆ))    β‡’   (𝐻 Fn 𝐷 β†’ 𝐺 = (𝐻 ∘ 𝐹))
 
Theoremoprab2co 6218* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) β†’ 𝐢 ∈ 𝑅)    &   ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) β†’ 𝐷 ∈ 𝑆)    &   πΉ = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ ⟨𝐢, 𝐷⟩)    &   πΊ = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ (𝐢𝑀𝐷))    β‡’   (𝑀 Fn (𝑅 Γ— 𝑆) β†’ 𝐺 = (𝑀 ∘ 𝐹))
 
Theoremdf1st2 6219* An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ 𝑧 = π‘₯} = (1st β†Ύ (V Γ— V))
 
Theoremdf2nd2 6220* An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ 𝑧 = 𝑦} = (2nd β†Ύ (V Γ— V))
 
Theorem1stconst 6221 The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
(𝐡 ∈ 𝑉 β†’ (1st β†Ύ (𝐴 Γ— {𝐡})):(𝐴 Γ— {𝐡})–1-1-onto→𝐴)
 
Theorem2ndconst 6222 The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
(𝐴 ∈ 𝑉 β†’ (2nd β†Ύ ({𝐴} Γ— 𝐡)):({𝐴} Γ— 𝐡)–1-1-onto→𝐡)
 
Theoremdfmpo 6223* Alternate definition for the maps-to notation df-mpo 5879 (although it requires that 𝐢 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐢 ∈ V    β‡’   (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) = βˆͺ π‘₯ ∈ 𝐴 βˆͺ 𝑦 ∈ 𝐡 {⟨⟨π‘₯, π‘¦βŸ©, 𝐢⟩}
 
Theoremcnvf1olem 6224 Lemma for cnvf1o 6225. (Contributed by Mario Carneiro, 27-Apr-2014.)
((Rel 𝐴 ∧ (𝐡 ∈ 𝐴 ∧ 𝐢 = βˆͺ β—‘{𝐡})) β†’ (𝐢 ∈ ◑𝐴 ∧ 𝐡 = βˆͺ β—‘{𝐢}))
 
Theoremcnvf1o 6225* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
(Rel 𝐴 β†’ (π‘₯ ∈ 𝐴 ↦ βˆͺ β—‘{π‘₯}):𝐴–1-1-onto→◑𝐴)
 
Theoremf2ndf 6226 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴⟢𝐡 β†’ (2nd β†Ύ 𝐹):𝐹⟢𝐡)
 
Theoremfo2ndf 6227 The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴⟢𝐡 β†’ (2nd β†Ύ 𝐹):𝐹–ontoβ†’ran 𝐹)
 
Theoremf1o2ndf1 6228 The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
(𝐹:𝐴–1-1→𝐡 β†’ (2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹)
 
Theoremalgrflem 6229 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐡 ∈ V    &   πΆ ∈ V    β‡’   (𝐡(𝐹 ∘ 1st )𝐢) = (πΉβ€˜π΅)
 
Theoremalgrflemg 6230 Lemma for algrf 12044 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
((𝐡 ∈ 𝑉 ∧ 𝐢 ∈ π‘Š) β†’ (𝐡(𝐹 ∘ 1st )𝐢) = (πΉβ€˜π΅))
 
Theoremxporderlem 6231* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
𝑇 = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (𝐴 Γ— 𝐡) ∧ 𝑦 ∈ (𝐴 Γ— 𝐡)) ∧ ((1st β€˜π‘₯)𝑅(1st β€˜π‘¦) ∨ ((1st β€˜π‘₯) = (1st β€˜π‘¦) ∧ (2nd β€˜π‘₯)𝑆(2nd β€˜π‘¦))))}    β‡’   (βŸ¨π‘Ž, π‘βŸ©π‘‡βŸ¨π‘, π‘‘βŸ© ↔ (((π‘Ž ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐡 ∧ 𝑑 ∈ 𝐡)) ∧ (π‘Žπ‘…π‘ ∨ (π‘Ž = 𝑐 ∧ 𝑏𝑆𝑑))))
 
Theorempoxp 6232* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
𝑇 = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (𝐴 Γ— 𝐡) ∧ 𝑦 ∈ (𝐴 Γ— 𝐡)) ∧ ((1st β€˜π‘₯)𝑅(1st β€˜π‘¦) ∨ ((1st β€˜π‘₯) = (1st β€˜π‘¦) ∧ (2nd β€˜π‘₯)𝑆(2nd β€˜π‘¦))))}    β‡’   ((𝑅 Po 𝐴 ∧ 𝑆 Po 𝐡) β†’ 𝑇 Po (𝐴 Γ— 𝐡))
 
Theoremspc2ed 6233* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.)
β„²π‘₯πœ’    &   β„²π‘¦πœ’    &   ((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) β†’ (πœ“ ↔ πœ’))    β‡’   ((πœ‘ ∧ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š)) β†’ (πœ’ β†’ βˆƒπ‘₯βˆƒπ‘¦πœ“))
 
Theoremcnvoprab 6234* The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
β„²π‘₯πœ“    &   β„²π‘¦πœ“    &   (π‘Ž = ⟨π‘₯, π‘¦βŸ© β†’ (πœ“ ↔ πœ‘))    &   (πœ“ β†’ π‘Ž ∈ (V Γ— V))    β‡’   β—‘{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘} = {βŸ¨π‘§, π‘ŽβŸ© ∣ πœ“}
 
Theoremf1od2 6235* Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡)) β†’ 𝐢 ∈ π‘Š)    &   ((πœ‘ ∧ 𝑧 ∈ 𝐷) β†’ (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ π‘Œ))    &   (πœ‘ β†’ (((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐡) ∧ 𝑧 = 𝐢) ↔ (𝑧 ∈ 𝐷 ∧ (π‘₯ = 𝐼 ∧ 𝑦 = 𝐽))))    β‡’   (πœ‘ β†’ 𝐹:(𝐴 Γ— 𝐡)–1-1-onto→𝐷)
 
Theoremdisjxp1 6236* The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ Disj π‘₯ ∈ 𝐴 𝐡)    β‡’   (πœ‘ β†’ Disj π‘₯ ∈ 𝐴 (𝐡 Γ— 𝐢))
 
Theoremdisjsnxp 6237* The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Disj 𝑗 ∈ 𝐴 ({𝑗} Γ— 𝐡)
 
2.6.16  Special maps-to operations

The following theorems are about maps-to operations (see df-mpo 5879) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 5952, ovmpox 6002 and fmpox 6200). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.

 
Theoremopeliunxp2f 6238* Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4767. (Contributed by AV, 25-Oct-2020.)
β„²π‘₯𝐸    &   (π‘₯ = 𝐢 β†’ 𝐡 = 𝐸)    β‡’   (⟨𝐢, 𝐷⟩ ∈ βˆͺ π‘₯ ∈ 𝐴 ({π‘₯} Γ— 𝐡) ↔ (𝐢 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))
 
Theoremmpoxopn0yelv 6239* If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
𝐹 = (π‘₯ ∈ V, 𝑦 ∈ (1st β€˜π‘₯) ↦ 𝐢)    β‡’   ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝑁 ∈ (βŸ¨π‘‰, π‘ŠβŸ©πΉπΎ) β†’ 𝐾 ∈ 𝑉))
 
Theoremmpoxopoveq 6240* Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
𝐹 = (π‘₯ ∈ V, 𝑦 ∈ (1st β€˜π‘₯) ↦ {𝑛 ∈ (1st β€˜π‘₯) ∣ πœ‘})    β‡’   (((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) ∧ 𝐾 ∈ 𝑉) β†’ (βŸ¨π‘‰, π‘ŠβŸ©πΉπΎ) = {𝑛 ∈ 𝑉 ∣ [βŸ¨π‘‰, π‘ŠβŸ© / π‘₯][𝐾 / 𝑦]πœ‘})
 
Theoremmpoxopovel 6241* Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
𝐹 = (π‘₯ ∈ V, 𝑦 ∈ (1st β€˜π‘₯) ↦ {𝑛 ∈ (1st β€˜π‘₯) ∣ πœ‘})    β‡’   ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝑁 ∈ (βŸ¨π‘‰, π‘ŠβŸ©πΉπΎ) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [βŸ¨π‘‰, π‘ŠβŸ© / π‘₯][𝐾 / 𝑦][𝑁 / 𝑛]πœ‘)))
 
Theoremrbropapd 6242* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(πœ‘ β†’ 𝑀 = {βŸ¨π‘“, π‘βŸ© ∣ (π‘“π‘Šπ‘ ∧ πœ“)})    &   ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (πœ“ ↔ πœ’))    β‡’   (πœ‘ β†’ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ π‘Œ) β†’ (𝐹𝑀𝑃 ↔ (πΉπ‘Šπ‘ƒ ∧ πœ’))))
 
Theoremrbropap 6243* Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation π‘Š restricted by the condition πœ“. (Contributed by AV, 31-Jan-2021.)
(πœ‘ β†’ 𝑀 = {βŸ¨π‘“, π‘βŸ© ∣ (π‘“π‘Šπ‘ ∧ πœ“)})    &   ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (πœ“ ↔ πœ’))    β‡’   ((πœ‘ ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ π‘Œ) β†’ (𝐹𝑀𝑃 ↔ (πΉπ‘Šπ‘ƒ ∧ πœ’)))
 
2.6.17  Function transposition
 
Syntaxctpos 6244 The transposition of a function.
class tpos 𝐹
 
Definitiondf-tpos 6245* Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(π‘₯, 𝑦) = 𝐹(𝑦, π‘₯). (Contributed by Mario Carneiro, 10-Sep-2015.)
tpos 𝐹 = (𝐹 ∘ (π‘₯ ∈ (β—‘dom 𝐹 βˆͺ {βˆ…}) ↦ βˆͺ β—‘{π‘₯}))
 
Theoremtposss 6246 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹 βŠ† 𝐺 β†’ tpos 𝐹 βŠ† tpos 𝐺)
 
Theoremtposeq 6247 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹 = 𝐺 β†’ tpos 𝐹 = tpos 𝐺)
 
Theoremtposeqd 6248 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
(πœ‘ β†’ 𝐹 = 𝐺)    β‡’   (πœ‘ β†’ tpos 𝐹 = tpos 𝐺)
 
Theoremtposssxp 6249 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
tpos 𝐹 βŠ† ((β—‘dom 𝐹 βˆͺ {βˆ…}) Γ— ran 𝐹)
 
Theoremreltpos 6250 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Rel tpos 𝐹
 
Theorembrtpos2 6251 Value of the transposition at a pair ⟨𝐴, 𝐡⟩. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐡 ∈ 𝑉 β†’ (𝐴tpos 𝐹𝐡 ↔ (𝐴 ∈ (β—‘dom 𝐹 βˆͺ {βˆ…}) ∧ βˆͺ β—‘{𝐴}𝐹𝐡)))
 
Theorembrtpos0 6252 The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐴 ∈ 𝑉 β†’ (βˆ…tpos 𝐹𝐴 ↔ βˆ…πΉπ΄))
 
Theoremreldmtpos 6253 Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom tpos 𝐹 ↔ Β¬ βˆ… ∈ dom 𝐹)
 
Theorembrtposg 6254 The transposition swaps arguments of a three-parameter relation. (Contributed by Jim Kingdon, 31-Jan-2019.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 ∈ 𝑋) β†’ (⟨𝐴, 𝐡⟩tpos 𝐹𝐢 ↔ ⟨𝐡, 𝐴⟩𝐹𝐢))
 
Theoremottposg 6255 The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐢 ∈ 𝑋) β†’ (⟨𝐴, 𝐡, 𝐢⟩ ∈ tpos 𝐹 ↔ ⟨𝐡, 𝐴, 𝐢⟩ ∈ 𝐹))
 
Theoremdmtpos 6256 The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 β†’ dom tpos 𝐹 = β—‘dom 𝐹)
 
Theoremrntpos 6257 The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 β†’ ran tpos 𝐹 = ran 𝐹)
 
Theoremtposexg 6258 The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
(𝐹 ∈ 𝑉 β†’ tpos 𝐹 ∈ V)
 
Theoremovtposg 6259 The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) Γ— ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴tpos 𝐹𝐡) = (𝐡𝐹𝐴))
 
Theoremtposfun 6260 The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Fun 𝐹 β†’ Fun tpos 𝐹)
 
Theoremdftpos2 6261* Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 β†’ tpos 𝐹 = (𝐹 ∘ (π‘₯ ∈ β—‘dom 𝐹 ↦ βˆͺ β—‘{π‘₯})))
 
Theoremdftpos3 6262* Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 4634. (Contributed by Mario Carneiro, 10-Sep-2015.)
(Rel dom 𝐹 β†’ tpos 𝐹 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ βŸ¨π‘¦, π‘₯βŸ©πΉπ‘§})
 
Theoremdftpos4 6263* Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos 𝐹 = (𝐹 ∘ (π‘₯ ∈ ((V Γ— V) βˆͺ {βˆ…}) ↦ βˆͺ β—‘{π‘₯}))
 
Theoremtpostpos 6264 Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.)
tpos tpos 𝐹 = (𝐹 ∩ (((V Γ— V) βˆͺ {βˆ…}) Γ— V))
 
Theoremtpostpos2 6265 Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
((Rel 𝐹 ∧ Rel dom 𝐹) β†’ tpos tpos 𝐹 = 𝐹)
 
Theoremtposfn2 6266 The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 β†’ (𝐹 Fn 𝐴 β†’ tpos 𝐹 Fn ◑𝐴))
 
Theoremtposfo2 6267 Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 β†’ (𝐹:𝐴–onto→𝐡 β†’ tpos 𝐹:◑𝐴–onto→𝐡))
 
Theoremtposf2 6268 The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 β†’ (𝐹:𝐴⟢𝐡 β†’ tpos 𝐹:β—‘π΄βŸΆπ΅))
 
Theoremtposf12 6269 Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 β†’ (𝐹:𝐴–1-1→𝐡 β†’ tpos 𝐹:◑𝐴–1-1→𝐡))
 
Theoremtposf1o2 6270 Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
(Rel 𝐴 β†’ (𝐹:𝐴–1-1-onto→𝐡 β†’ tpos 𝐹:◑𝐴–1-1-onto→𝐡))
 
Theoremtposfo 6271 The domain and codomain/range of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 Γ— 𝐡)–onto→𝐢 β†’ tpos 𝐹:(𝐡 Γ— 𝐴)–onto→𝐢)
 
Theoremtposf 6272 The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
(𝐹:(𝐴 Γ— 𝐡)⟢𝐢 β†’ tpos 𝐹:(𝐡 Γ— 𝐴)⟢𝐢)
 
Theoremtposfn 6273 Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 Γ— 𝐡) β†’ tpos 𝐹 Fn (𝐡 Γ— 𝐴))
 
Theoremtpos0 6274 Transposition of the empty set. (Contributed by NM, 10-Sep-2015.)
tpos βˆ… = βˆ…
 
Theoremtposco 6275 Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺)
 
Theoremtpossym 6276* Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝐹 Fn (𝐴 Γ— 𝐴) β†’ (tpos 𝐹 = 𝐹 ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝐹𝑦) = (𝑦𝐹π‘₯)))
 
Theoremtposeqi 6277 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = 𝐺    β‡’   tpos 𝐹 = tpos 𝐺
 
Theoremtposex 6278 A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 ∈ V    β‡’   tpos 𝐹 ∈ V
 
Theoremnftpos 6279 Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
β„²π‘₯𝐹    β‡’   β„²π‘₯tpos 𝐹
 
Theoremtposoprab 6280* Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ πœ‘}    β‡’   tpos 𝐹 = {βŸ¨βŸ¨π‘¦, π‘₯⟩, π‘§βŸ© ∣ πœ‘}
 
Theoremtposmpo 6281* Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐹 = (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢)    β‡’   tpos 𝐹 = (𝑦 ∈ 𝐡, π‘₯ ∈ 𝐴 ↦ 𝐢)
 
2.6.18  Undefined values
 
Theorempwuninel2 6282 The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(βˆͺ 𝐴 ∈ 𝑉 β†’ Β¬ 𝒫 βˆͺ 𝐴 ∈ 𝐴)
 
Theorem2pwuninelg 6283 The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
(𝐴 ∈ 𝑉 β†’ Β¬ 𝒫 𝒫 βˆͺ 𝐴 ∈ 𝐴)
 
2.6.19  Functions on ordinals; strictly monotone ordinal functions
 
Theoremiunon 6284* The indexed union of a set of ordinal numbers 𝐡(π‘₯) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ On) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ On)
 
Syntaxwsmo 6285 Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals.
wff Smo 𝐴
 
Definitiondf-smo 6286* Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
(Smo 𝐴 ↔ (𝐴:dom 𝐴⟢On ∧ Ord dom 𝐴 ∧ βˆ€π‘₯ ∈ dom π΄βˆ€π‘¦ ∈ dom 𝐴(π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦))))
 
Theoremdfsmo2 6287* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
(Smo 𝐹 ↔ (𝐹:dom 𝐹⟢On ∧ Ord dom 𝐹 ∧ βˆ€π‘₯ ∈ dom πΉβˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)))
 
Theoremissmo 6288* Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
𝐴:𝐡⟢On    &   Ord 𝐡    &   ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑦 β†’ (π΄β€˜π‘₯) ∈ (π΄β€˜π‘¦)))    &   dom 𝐴 = 𝐡    β‡’   Smo 𝐴
 
Theoremissmo2 6289* Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
(𝐹:𝐴⟢𝐡 β†’ ((𝐡 βŠ† On ∧ Ord 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ π‘₯ (πΉβ€˜π‘¦) ∈ (πΉβ€˜π‘₯)) β†’ Smo 𝐹))
 
Theoremsmoeq 6290 Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
(𝐴 = 𝐡 β†’ (Smo 𝐴 ↔ Smo 𝐡))
 
Theoremsmodm 6291 The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
(Smo 𝐴 β†’ Ord dom 𝐴)
 
Theoremsmores 6292 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((Smo 𝐴 ∧ 𝐡 ∈ dom 𝐴) β†’ Smo (𝐴 β†Ύ 𝐡))
 
Theoremsmores3 6293 A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
((Smo (𝐴 β†Ύ 𝐡) ∧ 𝐢 ∈ (dom 𝐴 ∩ 𝐡) ∧ Ord 𝐡) β†’ Smo (𝐴 β†Ύ 𝐢))
 
Theoremsmores2 6294 A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
((Smo 𝐹 ∧ Ord 𝐴) β†’ Smo (𝐹 β†Ύ 𝐴))
 
Theoremsmodm2 6295 The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
((𝐹 Fn 𝐴 ∧ Smo 𝐹) β†’ Ord 𝐴)
 
Theoremsmofvon2dm 6296 The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
((Smo 𝐹 ∧ 𝐡 ∈ dom 𝐹) β†’ (πΉβ€˜π΅) ∈ On)
 
Theoremiordsmo 6297 The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Ord 𝐴    β‡’   Smo ( I β†Ύ 𝐴)
 
Theoremsmo0 6298 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
Smo βˆ…
 
Theoremsmofvon 6299 If 𝐡 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐡, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡) β†’ (π΅β€˜π΄) ∈ On)
 
Theoremsmoel 6300 If π‘₯ is less than 𝑦 then a strictly monotone function's value will be strictly less at π‘₯ than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.)
((Smo 𝐡 ∧ 𝐴 ∈ dom 𝐡 ∧ 𝐢 ∈ 𝐴) β†’ (π΅β€˜πΆ) ∈ (π΅β€˜π΄))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14801
  Copyright terms: Public domain < Previous  Next >