HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcofunexg 6201 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 
Theoremcofunex2g 6202 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
((𝐴𝑉 ∧ Fun 𝐵) → (𝐴𝐵) ∈ V)
 
TheoremfnexALT 6203 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5363. This version of fnex 5813 uses ax-pow 4222 and ax-un 4484, whereas fnex 5813 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
 
Theoremfunexw 6204 Weak version of funex 5814 that holds without ax-coll 4163. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)
 
Theoremmptexw 6205* Weak version of mptex 5817 that holds without ax-coll 4163. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝐴 ∈ V    &   𝐶 ∈ V    &   𝑥𝐴 𝐵𝐶       (𝑥𝐴𝐵) ∈ V
 
Theoremfunrnex 6206 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5814. (Contributed by NM, 11-Nov-1995.)
(dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))
 
Theoremfocdmex 6207 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
(𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
 
Theoremf1dmex 6208 If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theoremabrexex 6209* Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be thought of as 𝐵(𝑥). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5816, funex 5814, fnex 5813, resfunexg 5812, and funimaexg 5363. See also abrexex2 6216. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V       {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V
 
Theoremabrexexg 6210* Existence of a class abstraction of existentially restricted sets. 𝑥 is normally a free-variable parameter in 𝐵. The antecedent assures us that 𝐴 is a set. (Contributed by NM, 3-Nov-2003.)
(𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
 
Theoremiunexg 6211* The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.)
((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
 
Theoremabrexex2g 6212* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
 
Theoremopabex3d 6213* Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
(𝜑𝐴 ∈ V)    &   ((𝜑𝑥𝐴) → {𝑦𝜓} ∈ V)       (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜓)} ∈ V)
 
Theoremopabex3 6214* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐴 ∈ V    &   (𝑥𝐴 → {𝑦𝜑} ∈ V)       {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
 
Theoremiunex 6215* The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.)
𝐴 ∈ V    &   𝐵 ∈ V        𝑥𝐴 𝐵 ∈ V
 
Theoremabrexex2 6216* Existence of an existentially restricted class abstraction. 𝜑 is normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 6209. (Contributed by NM, 12-Sep-2004.)
𝐴 ∈ V    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
 
Theoremabexssex 6217* Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.)
𝐴 ∈ V    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
 
Theoremabexex 6218* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
𝐴 ∈ V    &   (𝜑𝑥𝐴)    &   {𝑦𝜑} ∈ V       {𝑦 ∣ ∃𝑥𝜑} ∈ V
 
Theoremoprabexd 6219* Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)    &   (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})       (𝜑𝐹 ∈ V)
 
Theoremoprabex 6220* Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}       𝐹 ∈ V
 
Theoremoprabex3 6221* Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
𝐻 ∈ V    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}       𝐹 ∈ V
 
Theoremoprabrexex2 6222* Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
𝐴 ∈ V    &   {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ∈ V       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑤𝐴 𝜑} ∈ V
 
Theoremab2rexex 6223* Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 6209. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ∈ V
 
Theoremab2rexex2 6224* Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 6216. (Contributed by NM, 20-Sep-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   {𝑧𝜑} ∈ V       {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑} ∈ V
 
TheoremxpexgALT 6225 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4793 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
 
Theoremoffval3 6226* General value of (𝐹𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
 
Theoremoffres 6227 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 𝑅𝐺) ↾ 𝐷) = ((𝐹𝐷) ∘𝑓 𝑅(𝐺𝐷)))
 
Theoremofmres 6228* Equivalent expressions for a restriction of the function operation map. Unlike 𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 6229, allowing it to be used as a function or structure argument. By ofmresval 6177, the restricted operation map values are the same as the original values, allowing theorems for 𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
 
Theoremofmresex 6229 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V)
 
Theoremuchoice 6230* Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7326 (with the key difference being the change of to ∃!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
 
2.6.15  First and second members of an ordered pair
 
Syntaxc1st 6231 Extend the definition of a class to include the first member an ordered pair function.
class 1st
 
Syntaxc2nd 6232 Extend the definition of a class to include the second member an ordered pair function.
class 2nd
 
Definitiondf-1st 6233 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6239 proves that it does this. For example, (1st ‘⟨ 3 , 4 ) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5169 and op1stb 4529). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
1st = (𝑥 ∈ V ↦ dom {𝑥})
 
Definitiondf-2nd 6234 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6240 proves that it does this. For example, (2nd ‘⟨ 3 , 4 ) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5172 and op2ndb 5171). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
2nd = (𝑥 ∈ V ↦ ran {𝑥})
 
Theorem1stvalg 6235 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ V → (1st𝐴) = dom {𝐴})
 
Theorem2ndvalg 6236 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
 
Theorem1st0 6237 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
(1st ‘∅) = ∅
 
Theorem2nd0 6238 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
(2nd ‘∅) = ∅
 
Theoremop1st 6239 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (1st ‘⟨𝐴, 𝐵⟩) = 𝐴
 
Theoremop2nd 6240 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
 
Theoremop1std 6241 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐶 = ⟨𝐴, 𝐵⟩ → (1st𝐶) = 𝐴)
 
Theoremop2ndd 6242 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐶 = ⟨𝐴, 𝐵⟩ → (2nd𝐶) = 𝐵)
 
Theoremop1stg 6243 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
 
Theoremop2ndg 6244 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
 
Theoremot1stg 6245 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6245, ot2ndg 6246, ot3rdgg 6247.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
 
Theoremot2ndg 6246 Extract the second member of an ordered triple. (See ot1stg 6245 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
 
Theoremot3rdgg 6247 Extract the third member of an ordered triple. (See ot1stg 6245 comment.) (Contributed by NM, 3-Apr-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
 
Theorem1stval2 6248 Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
(𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
 
Theorem2ndval2 6249 Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
(𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
 
Theoremfo1st 6250 The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
1st :V–onto→V
 
Theoremfo2nd 6251 The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
2nd :V–onto→V
 
Theoremf1stres 6252 Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
(1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
 
Theoremf2ndres 6253 Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
(2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
 
Theoremfo1stresm 6254* Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
(∃𝑦 𝑦𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
 
Theoremfo2ndresm 6255* Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
(∃𝑥 𝑥𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
 
Theorem1stcof 6256 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
(𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)
 
Theorem2ndcof 6257 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
(𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)
 
Theoremxp1st 6258 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 ∈ (𝐵 × 𝐶) → (1st𝐴) ∈ 𝐵)
 
Theoremxp2nd 6259 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)
 
Theorem1stexg 6260 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
(𝐴𝑉 → (1st𝐴) ∈ V)
 
Theorem2ndexg 6261 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
(𝐴𝑉 → (2nd𝐴) ∈ V)
 
Theoremelxp6 6262 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5175. (Contributed by NM, 9-Oct-2004.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
 
Theoremelxp7 6263 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5175. (Contributed by NM, 19-Aug-2006.)
(𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
 
Theoremoprssdmm 6264* Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
((𝜑𝑢𝑆) → ∃𝑣 𝑣𝑢)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   (𝜑 → Rel 𝐹)       (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹)
 
Theoremeqopi 6265 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩)
 
Theoremxp2 6266* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
(𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
 
Theoremunielxp 6267 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
(𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))
 
Theorem1st2nd2 6268 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
(𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
 
Theoremxpopth 6269 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
 
Theoremeqop 6270 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
(𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
 
Theoremeqop2 6271 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
 
Theoremop1steq 6272* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
(𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
 
Theorem2nd1st 6273 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
(𝐴 ∈ (𝐵 × 𝐶) → {𝐴} = ⟨(2nd𝐴), (1st𝐴)⟩)
 
Theorem1st2nd 6274 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
 
Theorem1stdm 6275 The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
 
Theorem2ndrn 6276 The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
 
Theorem1st2ndbr 6277 Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
((Rel 𝐵𝐴𝐵) → (1st𝐴)𝐵(2nd𝐴))
 
Theoremreleldm2 6278* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
(Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥𝐴 (1st𝑥) = 𝐵))
 
Theoremreldm 6279* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
(Rel 𝐴 → dom 𝐴 = ran (𝑥𝐴 ↦ (1st𝑥)))
 
Theoremsbcopeq1a 6280 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3009 that avoids the existential quantifiers of copsexg 4292). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → ([(1st𝐴) / 𝑥][(2nd𝐴) / 𝑦]𝜑𝜑))
 
Theoremcsbopeq1a 6281 Equality theorem for substitution of a class 𝐴 for an ordered pair 𝑥, 𝑦 in 𝐵 (analog of csbeq1a 3103). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
 
Theoremdfopab2 6282* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
 
Theoremdfoprab3s 6283* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
 
Theoremdfoprab3 6284* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
(𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremdfoprab4 6285* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
 
Theoremdfoprab4f 6286* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝑥𝜑    &   𝑦𝜑    &   (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}
 
Theoremdfxp3 6287* Define the cross product of three classes. Compare df-xp 4685. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
 
Theoremelopabi 6288* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
(𝑥 = (1st𝐴) → (𝜑𝜓))    &   (𝑦 = (2nd𝐴) → (𝜓𝜒))       (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
 
Theoremeloprabi 6289* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = (1st ‘(1st𝐴)) → (𝜑𝜓))    &   (𝑦 = (2nd ‘(1st𝐴)) → (𝜓𝜒))    &   (𝑧 = (2nd𝐴) → (𝜒𝜃))       (𝐴 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → 𝜃)
 
Theoremmpomptsx 6290* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremmpompts 6291* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
(𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
 
Theoremdmmpossx 6292* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
 
Theoremfmpox 6293* Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
 
Theoremfmpo 6294* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹:(𝐴 × 𝐵)⟶𝐷)
 
Theoremfnmpo 6295* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
 
Theoremfnmpoi 6296* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       𝐹 Fn (𝐴 × 𝐵)
 
Theoremdmmpo 6297* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       dom 𝐹 = (𝐴 × 𝐵)
 
Theoremmpofvex 6298* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
 
Theoremmpofvexi 6299* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V    &   𝑅 ∈ V    &   𝑆 ∈ V       (𝑅𝐹𝑆) ∈ V
 
Theoremovmpoelrn 6300* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
𝑂 = (𝑥𝐴, 𝑦𝐵𝐶)       ((∀𝑥𝐴𝑦𝐵 𝐶𝑀𝑋𝐴𝑌𝐵) → (𝑋𝑂𝑌) ∈ 𝑀)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >