| Intuitionistic Logic Explorer Theorem List (p. 63 of 158)  | < Previous Next > | |
| Bad symbols? Try the
 GIF version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | 2ndvalg 6201 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | ||
| Theorem | 1st0 6202 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) | 
| ⊢ (1st ‘∅) = ∅ | ||
| Theorem | 2nd0 6203 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) | 
| ⊢ (2nd ‘∅) = ∅ | ||
| Theorem | op1st 6204 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
| Theorem | op2nd 6205 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
| Theorem | op1std 6206 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
| Theorem | op2ndd 6207 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
| Theorem | op1stg 6208 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
| Theorem | op2ndg 6209 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
| Theorem | ot1stg 6210 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6210, ot2ndg 6211, ot3rdgg 6212.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
| Theorem | ot2ndg 6211 | Extract the second member of an ordered triple. (See ot1stg 6210 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
| Theorem | ot3rdgg 6212 | Extract the third member of an ordered triple. (See ot1stg 6210 comment.) (Contributed by NM, 3-Apr-2015.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
| Theorem | 1stval2 6213 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) | 
| ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
| Theorem | 2ndval2 6214 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) | 
| ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
| Theorem | fo1st 6215 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| ⊢ 1st :V–onto→V | ||
| Theorem | fo2nd 6216 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| ⊢ 2nd :V–onto→V | ||
| Theorem | f1stres 6217 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
| Theorem | f2ndres 6218 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
| Theorem | fo1stresm 6219* | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.) | 
| ⊢ (∃𝑦 𝑦 ∈ 𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
| Theorem | fo2ndresm 6220* | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.) | 
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
| Theorem | 1stcof 6221 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) | 
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
| Theorem | 2ndcof 6222 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) | 
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
| Theorem | xp1st 6223 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
| Theorem | xp2nd 6224 | Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | ||
| Theorem | 1stexg 6225 | Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) | 
| ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) | ||
| Theorem | 2ndexg 6226 | Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) | 
| ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) | ||
| Theorem | elxp6 6227 | Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5157. (Contributed by NM, 9-Oct-2004.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | elxp7 6228 | Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5157. (Contributed by NM, 19-Aug-2006.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | oprssdmm 6229* | Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) | 
| ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ∃𝑣 𝑣 ∈ 𝑢) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ (𝜑 → Rel 𝐹) ⇒ ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹) | ||
| Theorem | eqopi 6230 | Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) | 
| ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) | ||
| Theorem | xp2 6231* | Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) | 
| ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} | ||
| Theorem | unielxp 6232 | The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ 𝐴 ∈ ∪ (𝐵 × 𝐶)) | ||
| Theorem | 1st2nd2 6233 | Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | xpopth 6234 | An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.) | 
| ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | eqop 6235 | Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) | 
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | eqop2 6236 | Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) | 
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | op1steq 6237* | Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) | 
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) | ||
| Theorem | 2nd1st 6238 | Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) | 
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | ||
| Theorem | 1st2nd 6239 | Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) | 
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | 1stdm 6240 | The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) | 
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) | ||
| Theorem | 2ndrn 6241 | The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) | 
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | ||
| Theorem | 1st2ndbr 6242 | Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) | 
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) | ||
| Theorem | releldm2 6243* | Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) | 
| ⊢ (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥 ∈ 𝐴 (1st ‘𝑥) = 𝐵)) | ||
| Theorem | reldm 6244* | An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) | 
| ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | ||
| Theorem | sbcopeq1a 6245 | Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2999 that avoids the existential quantifiers of copsexg 4277). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | csbopeq1a 6246 | Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analog of csbeq1a 3093). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) | ||
| Theorem | dfopab2 6247* | A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st ‘𝑧) / 𝑥][(2nd ‘𝑧) / 𝑦]𝜑} | ||
| Theorem | dfoprab3s 6248* | A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | ||
| Theorem | dfoprab3 6249* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) | 
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | dfoprab4 6250* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | dfoprab4f 6251* | Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | dfxp3 6252* | Define the cross product of three classes. Compare df-xp 4669. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) | 
| ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} | ||
| Theorem | elopabi 6253* | A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) | 
| ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) | ||
| Theorem | eloprabi 6254* | A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) | 
| ⊢ (𝑥 = (1st ‘(1st ‘𝐴)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘(1st ‘𝐴)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = (2nd ‘𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝜃) | ||
| Theorem | mpomptsx 6255* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) | 
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | mpompts 6256* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.) | 
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | dmmpossx 6257* | The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | ||
| Theorem | fmpox 6258* | Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) | ||
| Theorem | fmpo 6259* | Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) | ||
| Theorem | fnmpo 6260* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) | ||
| Theorem | fnmpoi 6261* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ 𝐹 Fn (𝐴 × 𝐵) | ||
| Theorem | dmmpo 6262* | Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ dom 𝐹 = (𝐴 × 𝐵) | ||
| Theorem | mpofvex 6263* | Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥∀𝑦 𝐶 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑆 ∈ 𝑋) → (𝑅𝐹𝑆) ∈ V) | ||
| Theorem | mpofvexi 6264* | Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V & ⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (𝑅𝐹𝑆) ∈ V | ||
| Theorem | ovmpoelrn 6265* | An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.) | 
| ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) ∈ 𝑀) | ||
| Theorem | dmmpoga 6266* | Domain of an operation given by the maps-to notation, closed form of dmmpo 6262. (Contributed by Alexander van der Vekens, 10-Feb-2019.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | dmmpog 6267* | Domain of an operation given by the maps-to notation, closed form of dmmpo 6262. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | mpoexxg 6268* | Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexg 6269* | Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexga 6270* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | ||
| Theorem | mpoexw 6271* | Weak version of mpoex 6272 that holds without ax-coll 4148. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | mpoex 6272* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) | 
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | fnmpoovd 6273* | A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) | 
| ⊢ (𝜑 → 𝑀 Fn (𝐴 × 𝐵)) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) | ||
| Theorem | fmpoco 6274* | Composition of two functions. Variation of fmptco 5728 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) | 
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐶 ↦ 𝑆)) & ⊢ (𝑧 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) | ||
| Theorem | oprabco 6275* | Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) ⇒ ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) | ||
| Theorem | oprab2co 6276* | Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.) | 
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) ⇒ ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) | ||
| Theorem | df1st2 6277* | An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | ||
| Theorem | df2nd2 6278* | An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | ||
| Theorem | 1stconst 6279 | The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) | 
| ⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴) | ||
| Theorem | 2ndconst 6280 | The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) | 
| ⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵) | ||
| Theorem | dfmpo 6281* | Alternate definition for the maps-to notation df-mpo 5927 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | ||
| Theorem | cnvf1olem 6282 | Lemma for cnvf1o 6283. (Contributed by Mario Carneiro, 27-Apr-2014.) | 
| ⊢ ((Rel 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (𝐶 ∈ ◡𝐴 ∧ 𝐵 = ∪ ◡{𝐶})) | ||
| Theorem | cnvf1o 6283* | Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) | 
| ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | ||
| Theorem | f2ndf 6284 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) | 
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) | ||
| Theorem | fo2ndf 6285 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) | 
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) | ||
| Theorem | f1o2ndf1 6286 | The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) | 
| ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | ||
| Theorem | algrflem 6287 | Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) | 
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) | ||
| Theorem | algrflemg 6288 | Lemma for algrf 12213 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) | 
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) | ||
| Theorem | xporderlem 6289* | Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) | 
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ (〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) | ||
| Theorem | poxp 6290* | A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) | 
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵)) | ||
| Theorem | spc2ed 6291* | Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) | 
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | ||
| Theorem | cnvoprab 6292* | The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) | 
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
| Theorem | f1od2 6293* | Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.) | 
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
| Theorem | disjxp1 6294* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) | 
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
| Theorem | disjsnxp 6295* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) | 
| ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
The following theorems are about maps-to operations (see df-mpo 5927) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 6000, ovmpox 6051 and fmpox 6258). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short.  | ||
| Theorem | opeliunxp2f 6296* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4806. (Contributed by AV, 25-Oct-2020.) | 
| ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
| Theorem | mpoxopn0yelv 6297* | If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) | 
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | ||
| Theorem | mpoxopoveq 6298* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) | 
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
| Theorem | mpoxopovel 6299* | Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) | 
| ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | ||
| Theorem | rbropapd 6300* | Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) | 
| ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) & ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) | ||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |