HomeHome Intuitionistic Logic Explorer
Theorem List (p. 63 of 115)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6201-6300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnacom 6201 Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))
 
Theoremnnaass 6202 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
 
Theoremnndi 6203 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
 
Theoremnnmass 6204 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
 
Theoremnnmsucr 6205 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
 
Theoremnnmcom 6206 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))
 
Theoremnndir 6207 Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) ·𝑜 𝐶) = ((𝐴 ·𝑜 𝐶) +𝑜 (𝐵 ·𝑜 𝐶)))
 
Theoremnnsucelsuc 6208 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4300, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4321. (Contributed by Jim Kingdon, 25-Aug-2019.)
(𝐵 ∈ ω → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
 
Theoremnnsucsssuc 6209 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4301, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4318. (Contributed by Jim Kingdon, 25-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
 
Theoremnntri3or 6210 Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremnntri2 6211 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
 
Theoremnnsucuniel 6212 Given an element 𝐴 of the union of a natural number 𝐵, suc 𝐴 is an element of 𝐵 itself. The reverse direction holds for all ordinals (sucunielr 4302). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4322). (Contributed by Jim Kingdon, 13-Mar-2022.)
(𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))
 
Theoremnntri1 6213 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremnntri3 6214 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
 
Theoremnntri2or2 6215 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
 
Theoremnndceq 6216 Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where 𝐵 is zero, see nndceq0 4406. (Contributed by Jim Kingdon, 31-Aug-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 = 𝐵)
 
Theoremnndcel 6217 Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴𝐵)
 
Theoremnnsseleq 6218 For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremdcdifsnid 6219* If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3568 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremnndifsnid 6220 If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3568 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremnnaordi 6221 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
 
Theoremnnaord 6222 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
 
Theoremnnaordr 6223 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶)))
 
Theoremnnaword 6224 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
 
Theoremnnacan 6225 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +𝑜 𝐵) = (𝐴 +𝑜 𝐶) ↔ 𝐵 = 𝐶))
 
Theoremnnaword1 6226 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +𝑜 𝐵))
 
Theoremnnaword2 6227 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +𝑜 𝐴))
 
Theoremnnawordi 6228 Adding to both sides of an inequality in ω (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +𝑜 𝐶) ⊆ (𝐵 +𝑜 𝐶)))
 
Theoremnnmordi 6229 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
 
Theoremnnmord 6230 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
 
Theoremnnmword 6231 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
 
Theoremnnmcan 6232 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))
 
Theorem1onn 6233 One is a natural number. (Contributed by NM, 29-Oct-1995.)
1𝑜 ∈ ω
 
Theorem2onn 6234 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
2𝑜 ∈ ω
 
Theorem3onn 6235 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3𝑜 ∈ ω
 
Theorem4onn 6236 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4𝑜 ∈ ω
 
Theoremnnm1 6237 Multiply an element of ω by 1𝑜. (Contributed by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (𝐴 ·𝑜 1𝑜) = 𝐴)
 
Theoremnnm2 6238 Multiply an element of ω by 2𝑜 (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴))
 
Theoremnn2m 6239 Multiply an element of ω by 2𝑜 (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ω → (2𝑜 ·𝑜 𝐴) = (𝐴 +𝑜 𝐴))
 
Theoremnnaordex 6240* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
 
Theoremnnawordex 6241* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵))
 
Theoremnnm00 6242 The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)))
 
2.6.24  Equivalence relations and classes
 
Syntaxwer 6243 Extend the definition of a wff to include the equivalence predicate.
wff 𝑅 Er 𝐴
 
Syntaxcec 6244 Extend the definition of a class to include equivalence class.
class [𝐴]𝑅
 
Syntaxcqs 6245 Extend the definition of a class to include quotient set.
class (𝐴 / 𝑅)
 
Definitiondf-er 6246 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6247 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6266, ersymb 6260, and ertr 6261. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
 
Theoremdfer2 6247* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
 
Definitiondf-ec 6248 Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 6247). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 6249. (Contributed by NM, 23-Jul-1995.)
[𝐴]𝑅 = (𝑅 “ {𝐴})
 
Theoremdfec2 6249* Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})
 
Theoremecexg 6250 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
(𝑅𝐵 → [𝐴]𝑅 ∈ V)
 
Theoremecexr 6251 An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
 
Definitiondf-qs 6252* Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
 
Theoremereq1 6253 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))
 
Theoremereq2 6254 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))
 
Theoremerrel 6255 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → Rel 𝑅)
 
Theoremerdm 6256 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
 
Theoremercl 6257 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐴𝑋)
 
Theoremersym 6258 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑅𝐴)
 
Theoremercl2 6259 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑋)
 
Theoremersymb 6260 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremertr 6261 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
 
Theoremertrd 6262 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr2d 6263 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐶𝑅𝐴)
 
Theoremertr3d 6264 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑅𝐴)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr4d 6265 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐶𝑅𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremerref 6266 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑𝐴𝑅𝐴)
 
Theoremercnv 6267 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 = 𝑅)
 
Theoremerrn 6268 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
 
Theoremerssxp 6269 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
 
Theoremerex 6270 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
 
Theoremerexb 6271 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
 
Theoremiserd 6272* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑 → Rel 𝑅)    &   ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)    &   ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)    &   (𝜑 → (𝑥𝐴𝑥𝑅𝑥))       (𝜑𝑅 Er 𝐴)
 
Theorembrdifun 6273 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))       ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremswoer 6274* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))       (𝜑𝑅 Er 𝑋)
 
Theoremswoord1 6275* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
 
Theoremswoord2 6276* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremeqerlem 6277* Lemma for eqer 6278. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
 
Theoremeqer 6278* Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       𝑅 Er V
 
Theoremider 6279 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
I Er V
 
Theorem0er 6280 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
∅ Er ∅
 
Theoremeceq1 6281 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq1d 6282 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq2 6283 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
 
Theoremelecg 6284 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremelec 6285 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
 
Theoremrelelec 6286 Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
(Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremecss 6287 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → [𝐴]𝑅𝑋)
 
Theoremecdmn0m 6288* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
(𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
 
Theoremereldm 6289 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)       (𝜑 → (𝐴𝑋𝐵𝑋))
 
Theoremerth 6290 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerth2 6291 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerthi 6292 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
 
Theoremecidsn 6293 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
[𝐴] I = {𝐴}
 
Theoremqseq1 6294 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
 
Theoremqseq2 6295 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
 
Theoremelqsg 6296* Closed form of elqs 6297. (Contributed by Rodolfo Medina, 12-Oct-2010.)
(𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
 
Theoremelqs 6297* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
𝐵 ∈ V       (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremelqsi 6298* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremecelqsg 6299 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 
Theoremecelqsi 6300 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑅 ∈ V       (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11413
  Copyright terms: Public domain < Previous  Next >