| Intuitionistic Logic Explorer Theorem List (p. 63 of 158) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | c2nd 6201 | Extend the definition of a class to include the second member an ordered pair function. |
| class 2nd | ||
| Definition | df-1st 6202 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6208 proves that it does this. For example, (1st ‘〈 3 , 4 〉) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5152 and op1stb 4514). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
| Definition | df-2nd 6203 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6209 proves that it does this. For example, (2nd ‘〈 3 , 4 〉) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5155 and op2ndb 5154). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
| ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
| Theorem | 1stvalg 6204 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 ∈ V → (1st ‘𝐴) = ∪ dom {𝐴}) | ||
| Theorem | 2ndvalg 6205 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) | ||
| Theorem | 1st0 6206 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (1st ‘∅) = ∅ | ||
| Theorem | 2nd0 6207 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
| ⊢ (2nd ‘∅) = ∅ | ||
| Theorem | op1st 6208 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
| Theorem | op2nd 6209 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
| Theorem | op1std 6210 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
| Theorem | op2ndd 6211 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
| Theorem | op1stg 6212 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
| Theorem | op2ndg 6213 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
| Theorem | ot1stg 6214 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6214, ot2ndg 6215, ot3rdgg 6216.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
| Theorem | ot2ndg 6215 | Extract the second member of an ordered triple. (See ot1stg 6214 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
| Theorem | ot3rdgg 6216 | Extract the third member of an ordered triple. (See ot1stg 6214 comment.) (Contributed by NM, 3-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
| Theorem | 1stval2 6217 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
| Theorem | 2ndval2 6218 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
| Theorem | fo1st 6219 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 1st :V–onto→V | ||
| Theorem | fo2nd 6220 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ 2nd :V–onto→V | ||
| Theorem | f1stres 6221 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
| Theorem | f2ndres 6222 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
| Theorem | fo1stresm 6223* | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝐵 → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
| Theorem | fo2ndresm 6224* | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
| Theorem | 1stcof 6225 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
| Theorem | 2ndcof 6226 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
| Theorem | xp1st 6227 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
| Theorem | xp2nd 6228 | Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | ||
| Theorem | 1stexg 6229 | Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (1st ‘𝐴) ∈ V) | ||
| Theorem | 2ndexg 6230 | Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (2nd ‘𝐴) ∈ V) | ||
| Theorem | elxp6 6231 | Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 9-Oct-2004.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | elxp7 6232 | Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 19-Aug-2006.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
| Theorem | oprssdmm 6233* | Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
| ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆) → ∃𝑣 𝑣 ∈ 𝑢) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) & ⊢ (𝜑 → Rel 𝐹) ⇒ ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ dom 𝐹) | ||
| Theorem | eqopi 6234 | Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) | ||
| Theorem | xp2 6235* | Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
| ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} | ||
| Theorem | unielxp 6236 | The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ 𝐴 ∈ ∪ (𝐵 × 𝐶)) | ||
| Theorem | 1st2nd2 6237 | Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | xpopth 6238 | An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.) |
| ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) | ||
| Theorem | eqop 6239 | Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | eqop2 6240 | Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
| Theorem | op1steq 6241* | Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) | ||
| Theorem | 2nd1st 6242 | Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
| ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | ||
| Theorem | 1st2nd 6243 | Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
| Theorem | 1stdm 6244 | The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) | ||
| Theorem | 2ndrn 6245 | The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | ||
| Theorem | 1st2ndbr 6246 | Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
| ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) | ||
| Theorem | releldm2 6247* | Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| ⊢ (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥 ∈ 𝐴 (1st ‘𝑥) = 𝐵)) | ||
| Theorem | reldm 6248* | An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | ||
| Theorem | sbcopeq1a 6249 | Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2999 that avoids the existential quantifiers of copsexg 4278). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) | ||
| Theorem | csbopeq1a 6250 | Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analog of csbeq1a 3093). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) | ||
| Theorem | dfopab2 6251* | A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st ‘𝑧) / 𝑥][(2nd ‘𝑧) / 𝑦]𝜑} | ||
| Theorem | dfoprab3s 6252* | A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | ||
| Theorem | dfoprab3 6253* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
| Theorem | dfoprab4 6254* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | dfoprab4f 6255* | Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
| Theorem | dfxp3 6256* | Define the cross product of three classes. Compare df-xp 4670. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
| ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} | ||
| Theorem | elopabi 6257* | A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) | ||
| Theorem | eloprabi 6258* | A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = (1st ‘(1st ‘𝐴)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘(1st ‘𝐴)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = (2nd ‘𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝜃) | ||
| Theorem | mpomptsx 6259* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | mpompts 6260* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
| Theorem | dmmpossx 6261* | The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | ||
| Theorem | fmpox 6262* | Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) | ||
| Theorem | fmpo 6263* | Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) | ||
| Theorem | fnmpo 6264* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) | ||
| Theorem | fnmpoi 6265* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ 𝐹 Fn (𝐴 × 𝐵) | ||
| Theorem | dmmpo 6266* | Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ dom 𝐹 = (𝐴 × 𝐵) | ||
| Theorem | mpofvex 6267* | Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥∀𝑦 𝐶 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑆 ∈ 𝑋) → (𝑅𝐹𝑆) ∈ V) | ||
| Theorem | mpofvexi 6268* | Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V & ⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (𝑅𝐹𝑆) ∈ V | ||
| Theorem | ovmpoelrn 6269* | An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.) |
| ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) ∈ 𝑀) | ||
| Theorem | dmmpoga 6270* | Domain of an operation given by the maps-to notation, closed form of dmmpo 6266. (Contributed by Alexander van der Vekens, 10-Feb-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | dmmpog 6271* | Domain of an operation given by the maps-to notation, closed form of dmmpo 6266. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
| Theorem | mpoexxg 6272* | Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexg 6273* | Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
| Theorem | mpoexga 6274* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | ||
| Theorem | mpoexw 6275* | Weak version of mpoex 6276 that holds without ax-coll 4149. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | mpoex 6276* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
| Theorem | fnmpoovd 6277* | A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) |
| ⊢ (𝜑 → 𝑀 Fn (𝐴 × 𝐵)) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) | ||
| Theorem | fmpoco 6278* | Composition of two functions. Variation of fmptco 5731 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ 𝐶) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐶 ↦ 𝑆)) & ⊢ (𝑧 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑇)) | ||
| Theorem | oprabco 6279* | Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) ⇒ ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) | ||
| Theorem | oprab2co 6280* | Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑅) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 〈𝐶, 𝐷〉) & ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑀𝐷)) ⇒ ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) | ||
| Theorem | df1st2 6281* | An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) | ||
| Theorem | df2nd2 6282* | An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V)) | ||
| Theorem | 1stconst 6283 | The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴) | ||
| Theorem | 2ndconst 6284 | The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) |
| ⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵) | ||
| Theorem | dfmpo 6285* | Alternate definition for the maps-to notation df-mpo 5930 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} | ||
| Theorem | cnvf1olem 6286 | Lemma for cnvf1o 6287. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| ⊢ ((Rel 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡{𝐵})) → (𝐶 ∈ ◡𝐴 ∧ 𝐵 = ∪ ◡{𝐶})) | ||
| Theorem | cnvf1o 6287* | Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
| ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) | ||
| Theorem | f2ndf 6288 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹⟶𝐵) | ||
| Theorem | fo2ndf 6289 | The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (2nd ↾ 𝐹):𝐹–onto→ran 𝐹) | ||
| Theorem | f1o2ndf1 6290 | The 2nd (second component of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
| ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | ||
| Theorem | algrflem 6291 | Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) | ||
| Theorem | algrflemg 6292 | Lemma for algrf 12226 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵)) | ||
| Theorem | xporderlem 6293* | Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ (〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) | ||
| Theorem | poxp 6294* | A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥)𝑆(2nd ‘𝑦))))} ⇒ ⊢ ((𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵)) | ||
| Theorem | spc2ed 6295* | Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | ||
| Theorem | cnvoprab 6296* | The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
| Theorem | f1od2 6297* | Describe an implicit one-to-one onto function of two variables. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
| Theorem | disjxp1 6298* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
| Theorem | disjsnxp 6299* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
The following theorems are about maps-to operations (see df-mpo 5930) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpox" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpox 6004, ovmpox 6055 and fmpox 6262). If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpoxop", and the maps-to operations are called "x-op maps-to operations" for short. | ||
| Theorem | opeliunxp2f 6300* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4807. (Contributed by AV, 25-Oct-2020.) |
| ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |