ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposssxp GIF version

Theorem tposssxp 6401
Description: The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)

Proof of Theorem tposssxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-tpos 6397 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 cossxp 5251 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
31, 2eqsstri 3256 . 2 tpos 𝐹 ⊆ (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹)
4 eqid 2229 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
54dmmptss 5225 . . 3 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅})
6 xpss1 4829 . . 3 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹))
75, 6ax-mp 5 . 2 (dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) × ran 𝐹) ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
83, 7sstri 3233 1 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
Colors of variables: wff set class
Syntax hints:  cun 3195  wss 3197  c0 3491  {csn 3666   cuni 3888  cmpt 4145   × cxp 4717  ccnv 4718  dom cdm 4719  ran crn 4720  ccom 4723  tpos ctpos 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-tpos 6397
This theorem is referenced by:  reltpos  6402  tposexg  6410
  Copyright terms: Public domain W3C validator