Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposssxp | GIF version |
Description: The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
tposssxp | ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tpos 6221 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
2 | cossxp 5131 | . . 3 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) | |
3 | 1, 2 | eqsstri 3179 | . 2 ⊢ tpos 𝐹 ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) |
4 | eqid 2170 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
5 | 4 | dmmptss 5105 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) |
6 | xpss1 4719 | . . 3 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
8 | 3, 7 | sstri 3156 | 1 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3119 ⊆ wss 3121 ∅c0 3414 {csn 3581 ∪ cuni 3794 ↦ cmpt 4048 × cxp 4607 ◡ccnv 4608 dom cdm 4609 ran crn 4610 ∘ ccom 4613 tpos ctpos 6220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-mpt 4050 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-tpos 6221 |
This theorem is referenced by: reltpos 6226 tposexg 6234 |
Copyright terms: Public domain | W3C validator |