| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tposssxp | GIF version | ||
| Description: The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| tposssxp | ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-tpos 6303 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | cossxp 5192 | . . 3 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) | |
| 3 | 1, 2 | eqsstri 3215 | . 2 ⊢ tpos 𝐹 ⊆ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) | 
| 4 | eqid 2196 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 5 | 4 | dmmptss 5166 | . . 3 ⊢ dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) | 
| 6 | xpss1 4773 | . . 3 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (◡dom 𝐹 ∪ {∅}) → (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (dom (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) × ran 𝐹) ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | 
| 8 | 3, 7 | sstri 3192 | 1 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | 
| Colors of variables: wff set class | 
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 ∅c0 3450 {csn 3622 ∪ cuni 3839 ↦ cmpt 4094 × cxp 4661 ◡ccnv 4662 dom cdm 4663 ran crn 4664 ∘ ccom 4667 tpos ctpos 6302 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-mpt 4096 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-tpos 6303 | 
| This theorem is referenced by: reltpos 6308 tposexg 6316 | 
| Copyright terms: Public domain | W3C validator |