Step | Hyp | Ref
| Expression |
1 | | df-tpos 6240 |
. . 3
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
2 | | relcnv 5002 |
. . . . . . 7
⊢ Rel ◡dom 𝐹 |
3 | | df-rel 4630 |
. . . . . . 7
⊢ (Rel
◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) |
4 | 2, 3 | mpbi 145 |
. . . . . 6
⊢ ◡dom 𝐹 ⊆ (V × V) |
5 | | unss1 3304 |
. . . . . 6
⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅})) |
6 | | resmpt 4951 |
. . . . . 6
⊢ ((◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅}) → ((𝑥
∈ ((V × V) ∪ {∅}) ↦ ∪
◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
7 | 4, 5, 6 | mp2b 8 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
8 | | resss 4927 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) |
9 | 7, 8 | eqsstrri 3188 |
. . . 4
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) |
10 | | coss2 4779 |
. . . 4
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) → (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}))) |
11 | 9, 10 | ax-mp 5 |
. . 3
⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
12 | 1, 11 | eqsstri 3187 |
. 2
⊢ tpos
𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
13 | | relco 5123 |
. . 3
⊢ Rel
(𝐹 ∘ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥})) |
14 | | vex 2740 |
. . . . 5
⊢ 𝑦 ∈ V |
15 | | vex 2740 |
. . . . 5
⊢ 𝑧 ∈ V |
16 | 14, 15 | opelco 4795 |
. . . 4
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧)) |
17 | | vex 2740 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
18 | | eleq1 2240 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅})
↔ 𝑦 ∈ ((V ×
V) ∪ {∅}))) |
19 | | sneq 3602 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
20 | 19 | cnveqd 4799 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ◡{𝑥} = ◡{𝑦}) |
21 | 20 | unieqd 3818 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ∪ ◡{𝑥} = ∪ ◡{𝑦}) |
22 | 21 | eqeq2d 2189 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑧 = ∪ ◡{𝑥} ↔ 𝑧 = ∪ ◡{𝑦})) |
23 | 18, 22 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}))) |
24 | | eqeq1 2184 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 = ∪ ◡{𝑦} ↔ 𝑤 = ∪ ◡{𝑦})) |
25 | 24 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦}))) |
26 | | df-mpt 4063 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥})} |
27 | 14, 17, 23, 25, 26 | brab 4269 |
. . . . . . . 8
⊢ (𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦})) |
28 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = ∪ ◡{𝑦}) |
29 | 17, 15 | breldm 4827 |
. . . . . . . . . . . . 13
⊢ (𝑤𝐹𝑧 → 𝑤 ∈ dom 𝐹) |
30 | 29 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹) |
31 | 28, 30 | eqeltrrd 2255 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦} ∈ dom 𝐹) |
32 | | elvv 4685 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (V × V) ↔
∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
33 | | opswapg 5111 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → ∪ ◡{〈𝑧, 𝑤〉} = 〈𝑤, 𝑧〉) |
34 | 15, 17, 33 | mp2an 426 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ◡{〈𝑧, 𝑤〉} = 〈𝑤, 𝑧〉 |
35 | 34 | eleq1i 2243 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
36 | 15, 17 | opelcnv 4805 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑧, 𝑤〉 ∈ ◡dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
37 | 35, 36 | bitr4i 187 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹) |
38 | | sneq 3602 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈𝑧, 𝑤〉 → {𝑦} = {〈𝑧, 𝑤〉}) |
39 | 38 | cnveqd 4799 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ◡{𝑦} = ◡{〈𝑧, 𝑤〉}) |
40 | 39 | unieqd 3818 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∪
◡{𝑦} = ∪ ◡{〈𝑧, 𝑤〉}) |
41 | 40 | eleq1d 2246 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ ∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹)) |
42 | | eleq1 2240 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦 ∈ ◡dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹)) |
43 | 41, 42 | bibi12d 235 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ((∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹) ↔ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹))) |
44 | 37, 43 | mpbiri 168 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
45 | 44 | exlimivv 1896 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
46 | 32, 45 | sylbi 121 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (V × V) →
(∪ ◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
47 | 46 | biimpcd 159 |
. . . . . . . . . . . 12
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ ◡dom 𝐹)) |
48 | | elun1 3302 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ◡dom 𝐹 → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
49 | 47, 48 | syl6 33 |
. . . . . . . . . . 11
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
50 | 31, 49 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
51 | | elun2 3303 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
52 | 51 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
53 | | simpll 527 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪
{∅})) |
54 | | elun 3276 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ((V × V) ∪
{∅}) ↔ (𝑦 ∈
(V × V) ∨ 𝑦 ∈
{∅})) |
55 | 53, 54 | sylib 122 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅})) |
56 | 50, 52, 55 | mpjaod 718 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
57 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧) |
58 | 28, 57 | eqbrtrrd 4024 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦}𝐹𝑧) |
59 | 56, 58 | jca 306 |
. . . . . . . 8
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
60 | 27, 59 | sylanb 284 |
. . . . . . 7
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
61 | | brtpos2 6246 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧))) |
62 | 15, 61 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
63 | 60, 62 | sylibr 134 |
. . . . . 6
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧) |
64 | | df-br 4001 |
. . . . . 6
⊢ (𝑦tpos 𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
65 | 63, 64 | sylib 122 |
. . . . 5
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
66 | 65 | exlimiv 1598 |
. . . 4
⊢
(∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
67 | 16, 66 | sylbi 121 |
. . 3
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
68 | 13, 67 | relssi 4714 |
. 2
⊢ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ⊆ tpos 𝐹 |
69 | 12, 68 | eqssi 3171 |
1
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |