ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos4 GIF version

Theorem dftpos4 6356
Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos4
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 6338 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 relcnv 5065 . . . . . . 7 Rel dom 𝐹
3 df-rel 4686 . . . . . . 7 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
42, 3mpbi 145 . . . . . 6 dom 𝐹 ⊆ (V × V)
5 unss1 3343 . . . . . 6 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
6 resmpt 5012 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) → ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
74, 5, 6mp2b 8 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
8 resss 4988 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
97, 8eqsstrri 3227 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
10 coss2 4838 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
119, 10ax-mp 5 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
121, 11eqsstri 3226 . 2 tpos 𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
13 relco 5186 . . 3 Rel (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
14 vex 2776 . . . . 5 𝑦 ∈ V
15 vex 2776 . . . . 5 𝑧 ∈ V
1614, 15opelco 4854 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧))
17 vex 2776 . . . . . . . . 9 𝑤 ∈ V
18 eleq1 2269 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅}) ↔ 𝑦 ∈ ((V × V) ∪ {∅})))
19 sneq 3645 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019cnveqd 4858 . . . . . . . . . . . 12 (𝑥 = 𝑦{𝑥} = {𝑦})
2120unieqd 3863 . . . . . . . . . . 11 (𝑥 = 𝑦 {𝑥} = {𝑦})
2221eqeq2d 2218 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = {𝑥} ↔ 𝑧 = {𝑦}))
2318, 22anbi12d 473 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦})))
24 eqeq1 2213 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = {𝑦} ↔ 𝑤 = {𝑦}))
2524anbi2d 464 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦})))
26 df-mpt 4111 . . . . . . . . 9 (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥})}
2714, 17, 23, 25, 26brab 4323 . . . . . . . 8 (𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}))
28 simplr 528 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = {𝑦})
2917, 15breldm 4887 . . . . . . . . . . . . 13 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
3029adantl 277 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹)
3128, 30eqeltrrd 2284 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦} ∈ dom 𝐹)
32 elvv 4741 . . . . . . . . . . . . . 14 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
33 opswapg 5174 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧⟩)
3415, 17, 33mp2an 426 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧
3534eleq1i 2272 . . . . . . . . . . . . . . . . 17 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3615, 17opelcnv 4864 . . . . . . . . . . . . . . . . 17 (⟨𝑧, 𝑤⟩ ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3735, 36bitr4i 187 . . . . . . . . . . . . . . . 16 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)
38 sneq 3645 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3938cnveqd 4858 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4039unieqd 3863 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4140eleq1d 2275 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹 {⟨𝑧, 𝑤⟩} ∈ dom 𝐹))
42 eleq1 2269 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹))
4341, 42bibi12d 235 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → (( {𝑦} ∈ dom 𝐹𝑦dom 𝐹) ↔ ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)))
4437, 43mpbiri 168 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4544exlimivv 1921 . . . . . . . . . . . . . 14 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4632, 45sylbi 121 . . . . . . . . . . . . 13 (𝑦 ∈ (V × V) → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4746biimpcd 159 . . . . . . . . . . . 12 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦dom 𝐹))
48 elun1 3341 . . . . . . . . . . . 12 (𝑦dom 𝐹𝑦 ∈ (dom 𝐹 ∪ {∅}))
4947, 48syl6 33 . . . . . . . . . . 11 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
5031, 49syl 14 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
51 elun2 3342 . . . . . . . . . . 11 (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
5251a1i 9 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
53 simpll 527 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪ {∅}))
54 elun 3315 . . . . . . . . . . 11 (𝑦 ∈ ((V × V) ∪ {∅}) ↔ (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5553, 54sylib 122 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5650, 52, 55mpjaod 720 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
57 simpr 110 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧)
5828, 57eqbrtrrd 4071 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦}𝐹𝑧)
5956, 58jca 306 . . . . . . . 8 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6027, 59sylanb 284 . . . . . . 7 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
61 brtpos2 6344 . . . . . . . 8 (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧)))
6215, 61ax-mp 5 . . . . . . 7 (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6360, 62sylibr 134 . . . . . 6 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧)
64 df-br 4048 . . . . . 6 (𝑦tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6563, 64sylib 122 . . . . 5 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6665exlimiv 1622 . . . 4 (∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6716, 66sylbi 121 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6813, 67relssi 4770 . 2 (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ⊆ tpos 𝐹
6912, 68eqssi 3210 1 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cun 3165  wss 3167  c0 3461  {csn 3634  cop 3637   cuni 3852   class class class wbr 4047  cmpt 4109   × cxp 4677  ccnv 4678  dom cdm 4679  cres 4681  ccom 4683  Rel wrel 4684  tpos ctpos 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-tpos 6338
This theorem is referenced by:  tposco  6368  nftpos  6372
  Copyright terms: Public domain W3C validator