| Step | Hyp | Ref
| Expression |
| 1 | | df-tpos 6312 |
. . 3
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 2 | | relcnv 5048 |
. . . . . . 7
⊢ Rel ◡dom 𝐹 |
| 3 | | df-rel 4671 |
. . . . . . 7
⊢ (Rel
◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) |
| 4 | 2, 3 | mpbi 145 |
. . . . . 6
⊢ ◡dom 𝐹 ⊆ (V × V) |
| 5 | | unss1 3333 |
. . . . . 6
⊢ (◡dom 𝐹 ⊆ (V × V) → (◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅})) |
| 6 | | resmpt 4995 |
. . . . . 6
⊢ ((◡dom 𝐹 ∪ {∅}) ⊆ ((V × V)
∪ {∅}) → ((𝑥
∈ ((V × V) ∪ {∅}) ↦ ∪
◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
| 7 | 4, 5, 6 | mp2b 8 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) = (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) |
| 8 | | resss 4971 |
. . . . 5
⊢ ((𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) ↾ (◡dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) |
| 9 | 7, 8 | eqsstrri 3217 |
. . . 4
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) |
| 10 | | coss2 4823 |
. . . 4
⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}) → (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥}))) |
| 11 | 9, 10 | ax-mp 5 |
. . 3
⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
| 12 | 1, 11 | eqsstri 3216 |
. 2
⊢ tpos
𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |
| 13 | | relco 5169 |
. . 3
⊢ Rel
(𝐹 ∘ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥})) |
| 14 | | vex 2766 |
. . . . 5
⊢ 𝑦 ∈ V |
| 15 | | vex 2766 |
. . . . 5
⊢ 𝑧 ∈ V |
| 16 | 14, 15 | opelco 4839 |
. . . 4
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧)) |
| 17 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 18 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅})
↔ 𝑦 ∈ ((V ×
V) ∪ {∅}))) |
| 19 | | sneq 3634 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 20 | 19 | cnveqd 4843 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ◡{𝑥} = ◡{𝑦}) |
| 21 | 20 | unieqd 3851 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ∪ ◡{𝑥} = ∪ ◡{𝑦}) |
| 22 | 21 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑧 = ∪ ◡{𝑥} ↔ 𝑧 = ∪ ◡{𝑦})) |
| 23 | 18, 22 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}))) |
| 24 | | eqeq1 2203 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 = ∪ ◡{𝑦} ↔ 𝑤 = ∪ ◡{𝑦})) |
| 25 | 24 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦}))) |
| 26 | | df-mpt 4097 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((V × V) ∪
{∅}) ↦ ∪ ◡{𝑥}) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧
𝑧 = ∪ ◡{𝑥})} |
| 27 | 14, 17, 23, 25, 26 | brab 4308 |
. . . . . . . 8
⊢ (𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧
𝑤 = ∪ ◡{𝑦})) |
| 28 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = ∪ ◡{𝑦}) |
| 29 | 17, 15 | breldm 4871 |
. . . . . . . . . . . . 13
⊢ (𝑤𝐹𝑧 → 𝑤 ∈ dom 𝐹) |
| 30 | 29 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹) |
| 31 | 28, 30 | eqeltrrd 2274 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦} ∈ dom 𝐹) |
| 32 | | elvv 4726 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (V × V) ↔
∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
| 33 | | opswapg 5157 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → ∪ ◡{〈𝑧, 𝑤〉} = 〈𝑤, 𝑧〉) |
| 34 | 15, 17, 33 | mp2an 426 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ◡{〈𝑧, 𝑤〉} = 〈𝑤, 𝑧〉 |
| 35 | 34 | eleq1i 2262 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
| 36 | 15, 17 | opelcnv 4849 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑧, 𝑤〉 ∈ ◡dom 𝐹 ↔ 〈𝑤, 𝑧〉 ∈ dom 𝐹) |
| 37 | 35, 36 | bitr4i 187 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹) |
| 38 | | sneq 3634 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈𝑧, 𝑤〉 → {𝑦} = {〈𝑧, 𝑤〉}) |
| 39 | 38 | cnveqd 4843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ◡{𝑦} = ◡{〈𝑧, 𝑤〉}) |
| 40 | 39 | unieqd 3851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∪
◡{𝑦} = ∪ ◡{〈𝑧, 𝑤〉}) |
| 41 | 40 | eleq1d 2265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ ∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹)) |
| 42 | | eleq1 2259 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦 ∈ ◡dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹)) |
| 43 | 41, 42 | bibi12d 235 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈𝑧, 𝑤〉 → ((∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹) ↔ (∪ ◡{〈𝑧, 𝑤〉} ∈ dom 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ◡dom 𝐹))) |
| 44 | 37, 43 | mpbiri 168 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 45 | 44 | exlimivv 1911 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (∪
◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 46 | 32, 45 | sylbi 121 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (V × V) →
(∪ ◡{𝑦} ∈ dom 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 47 | 46 | biimpcd 159 |
. . . . . . . . . . . 12
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ ◡dom 𝐹)) |
| 48 | | elun1 3331 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ◡dom 𝐹 → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 49 | 47, 48 | syl6 33 |
. . . . . . . . . . 11
⊢ (∪ ◡{𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 50 | 31, 49 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 51 | | elun2 3332 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 52 | 51 | a1i 9 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (◡dom 𝐹 ∪ {∅}))) |
| 53 | | simpll 527 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪
{∅})) |
| 54 | | elun 3305 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ((V × V) ∪
{∅}) ↔ (𝑦 ∈
(V × V) ∨ 𝑦 ∈
{∅})) |
| 55 | 53, 54 | sylib 122 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅})) |
| 56 | 50, 52, 55 | mpjaod 719 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (◡dom 𝐹 ∪ {∅})) |
| 57 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧) |
| 58 | 28, 57 | eqbrtrrd 4058 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → ∪ ◡{𝑦}𝐹𝑧) |
| 59 | 56, 58 | jca 306 |
. . . . . . . 8
⊢ (((𝑦 ∈ ((V × V) ∪
{∅}) ∧ 𝑤 = ∪ ◡{𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 60 | 27, 59 | sylanb 284 |
. . . . . . 7
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 61 | | brtpos2 6318 |
. . . . . . . 8
⊢ (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧))) |
| 62 | 15, 61 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑦}𝐹𝑧)) |
| 63 | 60, 62 | sylibr 134 |
. . . . . 6
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧) |
| 64 | | df-br 4035 |
. . . . . 6
⊢ (𝑦tpos 𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 65 | 63, 64 | sylib 122 |
. . . . 5
⊢ ((𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 66 | 65 | exlimiv 1612 |
. . . 4
⊢
(∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})𝑤 ∧ 𝑤𝐹𝑧) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 67 | 16, 66 | sylbi 121 |
. . 3
⊢
(〈𝑦, 𝑧〉 ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) → 〈𝑦, 𝑧〉 ∈ tpos 𝐹) |
| 68 | 13, 67 | relssi 4755 |
. 2
⊢ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) ⊆ tpos 𝐹 |
| 69 | 12, 68 | eqssi 3200 |
1
⊢ tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅})
↦ ∪ ◡{𝑥})) |