ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos4 GIF version

Theorem dftpos4 6042
Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos4
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 6024 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 relcnv 4823 . . . . . . 7 Rel dom 𝐹
3 df-rel 4459 . . . . . . 7 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
42, 3mpbi 144 . . . . . 6 dom 𝐹 ⊆ (V × V)
5 unss1 3170 . . . . . 6 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
6 resmpt 4773 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) → ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
74, 5, 6mp2b 8 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
8 resss 4750 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
97, 8eqsstr3i 3058 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
10 coss2 4605 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
119, 10ax-mp 7 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
121, 11eqsstri 3057 . 2 tpos 𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
13 relco 4942 . . 3 Rel (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
14 vex 2623 . . . . 5 𝑦 ∈ V
15 vex 2623 . . . . 5 𝑧 ∈ V
1614, 15opelco 4621 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧))
17 vex 2623 . . . . . . . . 9 𝑤 ∈ V
18 eleq1 2151 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅}) ↔ 𝑦 ∈ ((V × V) ∪ {∅})))
19 sneq 3461 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019cnveqd 4625 . . . . . . . . . . . 12 (𝑥 = 𝑦{𝑥} = {𝑦})
2120unieqd 3670 . . . . . . . . . . 11 (𝑥 = 𝑦 {𝑥} = {𝑦})
2221eqeq2d 2100 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = {𝑥} ↔ 𝑧 = {𝑦}))
2318, 22anbi12d 458 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦})))
24 eqeq1 2095 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = {𝑦} ↔ 𝑤 = {𝑦}))
2524anbi2d 453 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦})))
26 df-mpt 3907 . . . . . . . . 9 (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥})}
2714, 17, 23, 25, 26brab 4108 . . . . . . . 8 (𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}))
28 simplr 498 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = {𝑦})
2917, 15breldm 4653 . . . . . . . . . . . . 13 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
3029adantl 272 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹)
3128, 30eqeltrrd 2166 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦} ∈ dom 𝐹)
32 elvv 4513 . . . . . . . . . . . . . 14 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
33 opswapg 4930 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧⟩)
3415, 17, 33mp2an 418 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧
3534eleq1i 2154 . . . . . . . . . . . . . . . . 17 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3615, 17opelcnv 4631 . . . . . . . . . . . . . . . . 17 (⟨𝑧, 𝑤⟩ ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3735, 36bitr4i 186 . . . . . . . . . . . . . . . 16 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)
38 sneq 3461 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3938cnveqd 4625 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4039unieqd 3670 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4140eleq1d 2157 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹 {⟨𝑧, 𝑤⟩} ∈ dom 𝐹))
42 eleq1 2151 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹))
4341, 42bibi12d 234 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → (( {𝑦} ∈ dom 𝐹𝑦dom 𝐹) ↔ ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)))
4437, 43mpbiri 167 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4544exlimivv 1825 . . . . . . . . . . . . . 14 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4632, 45sylbi 120 . . . . . . . . . . . . 13 (𝑦 ∈ (V × V) → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4746biimpcd 158 . . . . . . . . . . . 12 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦dom 𝐹))
48 elun1 3168 . . . . . . . . . . . 12 (𝑦dom 𝐹𝑦 ∈ (dom 𝐹 ∪ {∅}))
4947, 48syl6 33 . . . . . . . . . . 11 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
5031, 49syl 14 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
51 elun2 3169 . . . . . . . . . . 11 (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
5251a1i 9 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
53 simpll 497 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪ {∅}))
54 elun 3142 . . . . . . . . . . 11 (𝑦 ∈ ((V × V) ∪ {∅}) ↔ (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5553, 54sylib 121 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5650, 52, 55mpjaod 674 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
57 simpr 109 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧)
5828, 57eqbrtrrd 3873 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦}𝐹𝑧)
5956, 58jca 301 . . . . . . . 8 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6027, 59sylanb 279 . . . . . . 7 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
61 brtpos2 6030 . . . . . . . 8 (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧)))
6215, 61ax-mp 7 . . . . . . 7 (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6360, 62sylibr 133 . . . . . 6 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧)
64 df-br 3852 . . . . . 6 (𝑦tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6563, 64sylib 121 . . . . 5 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6665exlimiv 1535 . . . 4 (∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6716, 66sylbi 120 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6813, 67relssi 4542 . 2 (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ⊆ tpos 𝐹
6912, 68eqssi 3042 1 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 665   = wceq 1290  wex 1427  wcel 1439  Vcvv 2620  cun 2998  wss 3000  c0 3287  {csn 3450  cop 3453   cuni 3659   class class class wbr 3851  cmpt 3905   × cxp 4450  ccnv 4451  dom cdm 4452  cres 4454  ccom 4456  Rel wrel 4457  tpos ctpos 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036  df-tpos 6024
This theorem is referenced by:  tposco  6054  nftpos  6058
  Copyright terms: Public domain W3C validator