| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposfun | GIF version | ||
| Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfun | ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 5328 | . . 3 ⊢ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) | |
| 2 | funco 5330 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
| 4 | df-tpos 6354 | . . 3 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 5 | 4 | funeqi 5311 | . 2 ⊢ (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}))) |
| 6 | 3, 5 | sylibr 134 | 1 ⊢ (Fun 𝐹 → Fun tpos 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∪ cun 3172 ∅c0 3468 {csn 3643 ∪ cuni 3864 ↦ cmpt 4121 ◡ccnv 4692 dom cdm 4693 ∘ ccom 4697 Fun wfun 5284 tpos ctpos 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-fun 5292 df-tpos 6354 |
| This theorem is referenced by: tposfn2 6375 |
| Copyright terms: Public domain | W3C validator |