ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfun GIF version

Theorem tposfun 6260
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun (Fun 𝐹 → Fun tpos 𝐹)

Proof of Theorem tposfun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funmpt 5254 . . 3 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
2 funco 5256 . . 3 ((Fun 𝐹 ∧ Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
31, 2mpan2 425 . 2 (Fun 𝐹 → Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
4 df-tpos 6245 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
54funeqi 5237 . 2 (Fun tpos 𝐹 ↔ Fun (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
63, 5sylibr 134 1 (Fun 𝐹 → Fun tpos 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  cun 3127  c0 3422  {csn 3592   cuni 3809  cmpt 4064  ccnv 4625  dom cdm 4626  ccom 4630  Fun wfun 5210  tpos ctpos 6244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-fun 5218  df-tpos 6245
This theorem is referenced by:  tposfn2  6266
  Copyright terms: Public domain W3C validator