ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss GIF version

Theorem tposss 6313
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)

Proof of Theorem tposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coss1 4822 . . 3 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
2 dmss 4866 . . . . . 6 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
3 cnvss 4840 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺dom 𝐹dom 𝐺)
4 unss1 3333 . . . . . 6 (dom 𝐹dom 𝐺 → (dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}))
5 resmpt 4995 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}) → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
62, 3, 4, 54syl 18 . . . . 5 (𝐹𝐺 → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
7 resss 4971 . . . . 5 ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})
86, 7eqsstrrdi 3237 . . . 4 (𝐹𝐺 → (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
9 coss2 4823 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
108, 9syl 14 . . 3 (𝐹𝐺 → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
111, 10sstrd 3194 . 2 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
12 df-tpos 6312 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
13 df-tpos 6312 . 2 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
1411, 12, 133sstr4g 3227 1 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155  wss 3157  c0 3451  {csn 3623   cuni 3840  cmpt 4095  ccnv 4663  dom cdm 4664  cres 4666  ccom 4668  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-tpos 6312
This theorem is referenced by:  tposeq  6314
  Copyright terms: Public domain W3C validator