ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss GIF version

Theorem tposss 6205
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)

Proof of Theorem tposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coss1 4753 . . 3 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
2 dmss 4797 . . . . . 6 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
3 cnvss 4771 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺dom 𝐹dom 𝐺)
4 unss1 3286 . . . . . 6 (dom 𝐹dom 𝐺 → (dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}))
5 resmpt 4926 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}) → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
62, 3, 4, 54syl 18 . . . . 5 (𝐹𝐺 → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
7 resss 4902 . . . . 5 ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})
86, 7eqsstrrdi 3190 . . . 4 (𝐹𝐺 → (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
9 coss2 4754 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
108, 9syl 14 . . 3 (𝐹𝐺 → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
111, 10sstrd 3147 . 2 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
12 df-tpos 6204 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
13 df-tpos 6204 . 2 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
1411, 12, 133sstr4g 3180 1 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342  cun 3109  wss 3111  c0 3404  {csn 3570   cuni 3783  cmpt 4037  ccnv 4597  dom cdm 4598  cres 4600  ccom 4602  tpos ctpos 6203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-mpt 4039  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-res 4610  df-tpos 6204
This theorem is referenced by:  tposeq  6206
  Copyright terms: Public domain W3C validator