ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss GIF version

Theorem tposss 6146
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)

Proof of Theorem tposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coss1 4697 . . 3 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
2 dmss 4741 . . . . . 6 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
3 cnvss 4715 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺dom 𝐹dom 𝐺)
4 unss1 3245 . . . . . 6 (dom 𝐹dom 𝐺 → (dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}))
5 resmpt 4870 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}) → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
62, 3, 4, 54syl 18 . . . . 5 (𝐹𝐺 → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
7 resss 4846 . . . . 5 ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})
86, 7eqsstrrdi 3150 . . . 4 (𝐹𝐺 → (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
9 coss2 4698 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
108, 9syl 14 . . 3 (𝐹𝐺 → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
111, 10sstrd 3107 . 2 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
12 df-tpos 6145 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
13 df-tpos 6145 . 2 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
1411, 12, 133sstr4g 3140 1 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  cun 3069  wss 3071  c0 3363  {csn 3527   cuni 3739  cmpt 3992  ccnv 4541  dom cdm 4542  cres 4544  ccom 4546  tpos ctpos 6144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3933  df-opab 3993  df-mpt 3994  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-res 4554  df-tpos 6145
This theorem is referenced by:  tposeq  6147
  Copyright terms: Public domain W3C validator