ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposss GIF version

Theorem tposss 5967
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)

Proof of Theorem tposss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coss1 4561 . . 3 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})))
2 dmss 4605 . . . . . 6 (𝐹𝐺 → dom 𝐹 ⊆ dom 𝐺)
3 cnvss 4579 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺dom 𝐹dom 𝐺)
4 unss1 3158 . . . . . 6 (dom 𝐹dom 𝐺 → (dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}))
5 resmpt 4729 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ (dom 𝐺 ∪ {∅}) → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
62, 3, 4, 54syl 18 . . . . 5 (𝐹𝐺 → ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
7 resss 4706 . . . . 5 ((𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})
86, 7syl6eqssr 3066 . . . 4 (𝐹𝐺 → (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
9 coss2 4562 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}) → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
108, 9syl 14 . . 3 (𝐹𝐺 → (𝐺 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
111, 10sstrd 3024 . 2 (𝐹𝐺 → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥})))
12 df-tpos 5966 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
13 df-tpos 5966 . 2 tpos 𝐺 = (𝐺 ∘ (𝑥 ∈ (dom 𝐺 ∪ {∅}) ↦ {𝑥}))
1411, 12, 133sstr4g 3056 1 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  cun 2986  wss 2988  c0 3275  {csn 3431   cuni 3638  cmpt 3876  ccnv 4412  dom cdm 4413  cres 4415  ccom 4417  tpos ctpos 5965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3823  df-opab 3877  df-mpt 3878  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-res 4425  df-tpos 5966
This theorem is referenced by:  tposeq  5968
  Copyright terms: Public domain W3C validator