ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos2 GIF version

Theorem dftpos2 6237
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos2 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos2
StepHypRef Expression
1 dmtpos 6232 . . 3 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
21reseq2d 4889 . 2 (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹dom 𝐹))
3 reltpos 6226 . . 3 Rel tpos 𝐹
4 resdm 4928 . . 3 (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹)
53, 4ax-mp 5 . 2 (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹
6 df-tpos 6221 . . . 4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
76reseq1i 4885 . . 3 (tpos 𝐹dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹)
8 resco 5113 . . 3 ((𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ↾ dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹))
9 ssun1 3290 . . . . 5 dom 𝐹 ⊆ (dom 𝐹 ∪ {∅})
10 resmpt 4937 . . . . 5 (dom 𝐹 ⊆ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥}))
119, 10ax-mp 5 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹) = (𝑥dom 𝐹 {𝑥})
1211coeq2i 4769 . . 3 (𝐹 ∘ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↾ dom 𝐹)) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
137, 8, 123eqtri 2195 . 2 (tpos 𝐹dom 𝐹) = (𝐹 ∘ (𝑥dom 𝐹 {𝑥}))
142, 5, 133eqtr3g 2226 1 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cun 3119  wss 3121  c0 3414  {csn 3581   cuni 3794  cmpt 4048  ccnv 4608  dom cdm 4609  cres 4611  ccom 4613  Rel wrel 4614  tpos ctpos 6220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204  df-tpos 6221
This theorem is referenced by:  tposf12  6245
  Copyright terms: Public domain W3C validator