Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftpos2 | GIF version |
Description: Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos2 | ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmtpos 6232 | . . 3 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
2 | 1 | reseq2d 4889 | . 2 ⊢ (Rel dom 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = (tpos 𝐹 ↾ ◡dom 𝐹)) |
3 | reltpos 6226 | . . 3 ⊢ Rel tpos 𝐹 | |
4 | resdm 4928 | . . 3 ⊢ (Rel tpos 𝐹 → (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (tpos 𝐹 ↾ dom tpos 𝐹) = tpos 𝐹 |
6 | df-tpos 6221 | . . . 4 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
7 | 6 | reseq1i 4885 | . . 3 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) |
8 | resco 5113 | . . 3 ⊢ ((𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) ↾ ◡dom 𝐹) = (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) | |
9 | ssun1 3290 | . . . . 5 ⊢ ◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) | |
10 | resmpt 4937 | . . . . 5 ⊢ (◡dom 𝐹 ⊆ (◡dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹) = (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) |
12 | 11 | coeq2i 4769 | . . 3 ⊢ (𝐹 ∘ ((𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) ↾ ◡dom 𝐹)) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
13 | 7, 8, 12 | 3eqtri 2195 | . 2 ⊢ (tpos 𝐹 ↾ ◡dom 𝐹) = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) |
14 | 2, 5, 13 | 3eqtr3g 2226 | 1 ⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∪ cun 3119 ⊆ wss 3121 ∅c0 3414 {csn 3581 ∪ cuni 3794 ↦ cmpt 4048 ◡ccnv 4608 dom cdm 4609 ↾ cres 4611 ∘ ccom 4613 Rel wrel 4614 tpos ctpos 6220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 df-tpos 6221 |
This theorem is referenced by: tposf12 6245 |
Copyright terms: Public domain | W3C validator |