| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limon | GIF version | ||
| Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| limon | ⊢ Lim On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 4539 | . 2 ⊢ Ord On | |
| 2 | 0elon 4444 | . 2 ⊢ ∅ ∈ On | |
| 3 | unon 4564 | . . 3 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2210 | . 2 ⊢ On = ∪ On |
| 5 | dflim2 4422 | . 2 ⊢ (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = ∪ On)) | |
| 6 | 1, 2, 4, 5 | mpbir3an 1182 | 1 ⊢ Lim On |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 ∅c0 3462 ∪ cuni 3853 Ord word 4414 Oncon0 4415 Lim wlim 4416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |