![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > limon | GIF version |
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
limon | ⊢ Lim On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 4518 | . 2 ⊢ Ord On | |
2 | 0elon 4423 | . 2 ⊢ ∅ ∈ On | |
3 | unon 4543 | . . 3 ⊢ ∪ On = On | |
4 | 3 | eqcomi 2197 | . 2 ⊢ On = ∪ On |
5 | dflim2 4401 | . 2 ⊢ (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = ∪ On)) | |
6 | 1, 2, 4, 5 | mpbir3an 1181 | 1 ⊢ Lim On |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∅c0 3446 ∪ cuni 3835 Ord word 4393 Oncon0 4394 Lim wlim 4395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |