| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limon | GIF version | ||
| Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| limon | ⊢ Lim On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 4523 | . 2 ⊢ Ord On | |
| 2 | 0elon 4428 | . 2 ⊢ ∅ ∈ On | |
| 3 | unon 4548 | . . 3 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2200 | . 2 ⊢ On = ∪ On |
| 5 | dflim2 4406 | . 2 ⊢ (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = ∪ On)) | |
| 6 | 1, 2, 4, 5 | mpbir3an 1181 | 1 ⊢ Lim On |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∅c0 3451 ∪ cuni 3840 Ord word 4398 Oncon0 4399 Lim wlim 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |