| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limon | GIF version | ||
| Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| limon | ⊢ Lim On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 4575 | . 2 ⊢ Ord On | |
| 2 | 0elon 4480 | . 2 ⊢ ∅ ∈ On | |
| 3 | unon 4600 | . . 3 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2233 | . 2 ⊢ On = ∪ On |
| 5 | dflim2 4458 | . 2 ⊢ (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = ∪ On)) | |
| 6 | 1, 2, 4, 5 | mpbir3an 1203 | 1 ⊢ Lim On |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∅c0 3491 ∪ cuni 3887 Ord word 4450 Oncon0 4451 Lim wlim 4452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |