ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon GIF version

Theorem limon 4526
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4499 . 2 Ord On
2 0elon 4406 . 2 ∅ ∈ On
3 unon 4524 . . 3 On = On
43eqcomi 2192 . 2 On = On
5 dflim2 4384 . 2 (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = On))
61, 2, 4, 5mpbir3an 1180 1 Lim On
Colors of variables: wff set class
Syntax hints:   = wceq 1363  wcel 2159  c0 3436   cuni 3823  Ord word 4376  Oncon0 4377  Lim wlim 4378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-uni 3824  df-tr 4116  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator