ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon GIF version

Theorem limon 4490
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4463 . 2 Ord On
2 0elon 4370 . 2 ∅ ∈ On
3 unon 4488 . . 3 On = On
43eqcomi 2169 . 2 On = On
5 dflim2 4348 . 2 (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = On))
61, 2, 4, 5mpbir3an 1169 1 Lim On
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  c0 3409   cuni 3789  Ord word 4340  Oncon0 4341  Lim wlim 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator