ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon GIF version

Theorem limon 4602
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4575 . 2 Ord On
2 0elon 4480 . 2 ∅ ∈ On
3 unon 4600 . . 3 On = On
43eqcomi 2233 . 2 On = On
5 dflim2 4458 . 2 (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = On))
61, 2, 4, 5mpbir3an 1203 1 Lim On
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  c0 3491   cuni 3887  Ord word 4450  Oncon0 4451  Lim wlim 4452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator