ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon GIF version

Theorem limon 4546
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4519 . 2 Ord On
2 0elon 4424 . 2 ∅ ∈ On
3 unon 4544 . . 3 On = On
43eqcomi 2197 . 2 On = On
5 dflim2 4402 . 2 (Lim On ↔ (Ord On ∧ ∅ ∈ On ∧ On = On))
61, 2, 4, 5mpbir3an 1181 1 Lim On
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  c0 3447   cuni 3836  Ord word 4394  Oncon0 4395  Lim wlim 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-tr 4129  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator