| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4668 | . 2 ⊢ Ord ω | |
| 2 | peano1 4655 | . 2 ⊢ ∅ ∈ ω | |
| 3 | vex 2776 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 4 | 3 | sucex 4560 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
| 5 | 4 | isseti 2782 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
| 6 | peano2 4656 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 7 | 3 | sucid 4477 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
| 8 | 6, 7 | jctil 312 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
| 9 | eleq2 2270 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
| 10 | eleq1 2269 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
| 11 | 9, 10 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
| 12 | 8, 11 | imbitrrid 156 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
| 13 | 5, 12 | eximii 1626 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 14 | 13 | 19.37aiv 1699 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 15 | eluni 3862 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
| 17 | 16 | ssriv 3201 | . . 3 ⊢ ω ⊆ ∪ ω |
| 18 | orduniss 4485 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
| 19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω |
| 20 | 17, 19 | eqssi 3213 | . 2 ⊢ ω = ∪ ω |
| 21 | dflim2 4430 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
| 22 | 1, 2, 20, 21 | mpbir3an 1182 | 1 ⊢ Lim ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 ∪ cuni 3859 Ord word 4422 Lim wlim 4424 suc csuc 4425 ωcom 4651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-int 3895 df-tr 4154 df-iord 4426 df-ilim 4429 df-suc 4431 df-iom 4652 |
| This theorem is referenced by: freccllem 6506 frecfcllem 6508 frecsuclem 6510 |
| Copyright terms: Public domain | W3C validator |