Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limom | GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 4591 | . 2 ⊢ Ord ω | |
2 | peano1 4578 | . 2 ⊢ ∅ ∈ ω | |
3 | vex 2733 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
4 | 3 | sucex 4483 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
5 | 4 | isseti 2738 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
6 | peano2 4579 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
7 | 3 | sucid 4402 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
8 | 6, 7 | jctil 310 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
9 | eleq2 2234 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
10 | eleq1 2233 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
11 | 9, 10 | anbi12d 470 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
12 | 8, 11 | syl5ibr 155 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
13 | 5, 12 | eximii 1595 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
14 | 13 | 19.37aiv 1668 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
15 | eluni 3799 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
16 | 14, 15 | sylibr 133 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
17 | 16 | ssriv 3151 | . . 3 ⊢ ω ⊆ ∪ ω |
18 | orduniss 4410 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω |
20 | 17, 19 | eqssi 3163 | . 2 ⊢ ω = ∪ ω |
21 | dflim2 4355 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
22 | 1, 2, 20, 21 | mpbir3an 1174 | 1 ⊢ Lim ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 ∪ cuni 3796 Ord word 4347 Lim wlim 4349 suc csuc 4350 ωcom 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-ilim 4354 df-suc 4356 df-iom 4575 |
This theorem is referenced by: freccllem 6381 frecfcllem 6383 frecsuclem 6385 |
Copyright terms: Public domain | W3C validator |