| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4655 | . 2 ⊢ Ord ω | |
| 2 | peano1 4642 | . 2 ⊢ ∅ ∈ ω | |
| 3 | vex 2775 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 4 | 3 | sucex 4547 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
| 5 | 4 | isseti 2780 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
| 6 | peano2 4643 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 7 | 3 | sucid 4464 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
| 8 | 6, 7 | jctil 312 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
| 9 | eleq2 2269 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
| 10 | eleq1 2268 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
| 11 | 9, 10 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
| 12 | 8, 11 | imbitrrid 156 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
| 13 | 5, 12 | eximii 1625 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 14 | 13 | 19.37aiv 1698 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 15 | eluni 3853 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
| 17 | 16 | ssriv 3197 | . . 3 ⊢ ω ⊆ ∪ ω |
| 18 | orduniss 4472 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
| 19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω |
| 20 | 17, 19 | eqssi 3209 | . 2 ⊢ ω = ∪ ω |
| 21 | dflim2 4417 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
| 22 | 1, 2, 20, 21 | mpbir3an 1182 | 1 ⊢ Lim ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ⊆ wss 3166 ∅c0 3460 ∪ cuni 3850 Ord word 4409 Lim wlim 4411 suc csuc 4412 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-ilim 4416 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: freccllem 6488 frecfcllem 6490 frecsuclem 6492 |
| Copyright terms: Public domain | W3C validator |