| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4644 | . 2 ⊢ Ord ω | |
| 2 | peano1 4631 | . 2 ⊢ ∅ ∈ ω | |
| 3 | vex 2766 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 4 | 3 | sucex 4536 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
| 5 | 4 | isseti 2771 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
| 6 | peano2 4632 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 7 | 3 | sucid 4453 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
| 8 | 6, 7 | jctil 312 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
| 9 | eleq2 2260 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
| 10 | eleq1 2259 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
| 11 | 9, 10 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
| 12 | 8, 11 | imbitrrid 156 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
| 13 | 5, 12 | eximii 1616 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 14 | 13 | 19.37aiv 1689 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
| 15 | eluni 3843 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
| 17 | 16 | ssriv 3188 | . . 3 ⊢ ω ⊆ ∪ ω |
| 18 | orduniss 4461 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
| 19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω |
| 20 | 17, 19 | eqssi 3200 | . 2 ⊢ ω = ∪ ω |
| 21 | dflim2 4406 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
| 22 | 1, 2, 20, 21 | mpbir3an 1181 | 1 ⊢ Lim ω |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3451 ∪ cuni 3840 Ord word 4398 Lim wlim 4400 suc csuc 4401 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-ilim 4405 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: freccllem 6469 frecfcllem 6471 frecsuclem 6473 |
| Copyright terms: Public domain | W3C validator |