ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom GIF version

Theorem limom 4598
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4591 . 2 Ord ω
2 peano1 4578 . 2 ∅ ∈ ω
3 vex 2733 . . . . . . . . 9 𝑥 ∈ V
43sucex 4483 . . . . . . . 8 suc 𝑥 ∈ V
54isseti 2738 . . . . . . 7 𝑧 𝑧 = suc 𝑥
6 peano2 4579 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
73sucid 4402 . . . . . . . . 9 𝑥 ∈ suc 𝑥
86, 7jctil 310 . . . . . . . 8 (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))
9 eleq2 2234 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑥𝑧𝑥 ∈ suc 𝑥))
10 eleq1 2233 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω))
119, 10anbi12d 470 . . . . . . . 8 (𝑧 = suc 𝑥 → ((𝑥𝑧𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)))
128, 11syl5ibr 155 . . . . . . 7 (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω)))
135, 12eximii 1595 . . . . . 6 𝑧(𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω))
141319.37aiv 1668 . . . . 5 (𝑥 ∈ ω → ∃𝑧(𝑥𝑧𝑧 ∈ ω))
15 eluni 3799 . . . . 5 (𝑥 ω ↔ ∃𝑧(𝑥𝑧𝑧 ∈ ω))
1614, 15sylibr 133 . . . 4 (𝑥 ∈ ω → 𝑥 ω)
1716ssriv 3151 . . 3 ω ⊆ ω
18 orduniss 4410 . . . 4 (Ord ω → ω ⊆ ω)
191, 18ax-mp 5 . . 3 ω ⊆ ω
2017, 19eqssi 3163 . 2 ω = ω
21 dflim2 4355 . 2 (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ω))
221, 2, 20, 21mpbir3an 1174 1 Lim ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wss 3121  c0 3414   cuni 3796  Ord word 4347  Lim wlim 4349  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-ilim 4354  df-suc 4356  df-iom 4575
This theorem is referenced by:  freccllem  6381  frecfcllem  6383  frecsuclem  6385
  Copyright terms: Public domain W3C validator