| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > limom | GIF version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| limom | ⊢ Lim ω | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordom 4643 | . 2 ⊢ Ord ω | |
| 2 | peano1 4630 | . 2 ⊢ ∅ ∈ ω | |
| 3 | vex 2766 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 4 | 3 | sucex 4535 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V | 
| 5 | 4 | isseti 2771 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 | 
| 6 | peano2 4631 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 7 | 3 | sucid 4452 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 | 
| 8 | 6, 7 | jctil 312 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) | 
| 9 | eleq2 2260 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
| 10 | eleq1 2259 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
| 11 | 9, 10 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) | 
| 12 | 8, 11 | imbitrrid 156 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) | 
| 13 | 5, 12 | eximii 1616 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | 
| 14 | 13 | 19.37aiv 1689 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | 
| 15 | eluni 3842 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
| 16 | 14, 15 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) | 
| 17 | 16 | ssriv 3187 | . . 3 ⊢ ω ⊆ ∪ ω | 
| 18 | orduniss 4460 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
| 19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω | 
| 20 | 17, 19 | eqssi 3199 | . 2 ⊢ ω = ∪ ω | 
| 21 | dflim2 4405 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
| 22 | 1, 2, 20, 21 | mpbir3an 1181 | 1 ⊢ Lim ω | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 ∪ cuni 3839 Ord word 4397 Lim wlim 4399 suc csuc 4400 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-ilim 4404 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: freccllem 6460 frecfcllem 6462 frecsuclem 6464 | 
| Copyright terms: Public domain | W3C validator |