Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limom | GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 4584 | . 2 ⊢ Ord ω | |
2 | peano1 4571 | . 2 ⊢ ∅ ∈ ω | |
3 | vex 2729 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
4 | 3 | sucex 4476 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
5 | 4 | isseti 2734 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
6 | peano2 4572 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
7 | 3 | sucid 4395 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
8 | 6, 7 | jctil 310 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
9 | eleq2 2230 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
10 | eleq1 2229 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
11 | 9, 10 | anbi12d 465 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
12 | 8, 11 | syl5ibr 155 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
13 | 5, 12 | eximii 1590 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
14 | 13 | 19.37aiv 1663 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
15 | eluni 3792 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
16 | 14, 15 | sylibr 133 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
17 | 16 | ssriv 3146 | . . 3 ⊢ ω ⊆ ∪ ω |
18 | orduniss 4403 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
19 | 1, 18 | ax-mp 5 | . . 3 ⊢ ∪ ω ⊆ ω |
20 | 17, 19 | eqssi 3158 | . 2 ⊢ ω = ∪ ω |
21 | dflim2 4348 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
22 | 1, 2, 20, 21 | mpbir3an 1169 | 1 ⊢ Lim ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ⊆ wss 3116 ∅c0 3409 ∪ cuni 3789 Ord word 4340 Lim wlim 4342 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-ilim 4347 df-suc 4349 df-iom 4568 |
This theorem is referenced by: freccllem 6370 frecfcllem 6372 frecsuclem 6374 |
Copyright terms: Public domain | W3C validator |