ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom GIF version

Theorem limom 4535
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4528 . 2 Ord ω
2 peano1 4516 . 2 ∅ ∈ ω
3 vex 2692 . . . . . . . . 9 𝑥 ∈ V
43sucex 4423 . . . . . . . 8 suc 𝑥 ∈ V
54isseti 2697 . . . . . . 7 𝑧 𝑧 = suc 𝑥
6 peano2 4517 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
73sucid 4347 . . . . . . . . 9 𝑥 ∈ suc 𝑥
86, 7jctil 310 . . . . . . . 8 (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))
9 eleq2 2204 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑥𝑧𝑥 ∈ suc 𝑥))
10 eleq1 2203 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω))
119, 10anbi12d 465 . . . . . . . 8 (𝑧 = suc 𝑥 → ((𝑥𝑧𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)))
128, 11syl5ibr 155 . . . . . . 7 (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω)))
135, 12eximii 1582 . . . . . 6 𝑧(𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω))
141319.37aiv 1654 . . . . 5 (𝑥 ∈ ω → ∃𝑧(𝑥𝑧𝑧 ∈ ω))
15 eluni 3747 . . . . 5 (𝑥 ω ↔ ∃𝑧(𝑥𝑧𝑧 ∈ ω))
1614, 15sylibr 133 . . . 4 (𝑥 ∈ ω → 𝑥 ω)
1716ssriv 3106 . . 3 ω ⊆ ω
18 orduniss 4355 . . . 4 (Ord ω → ω ⊆ ω)
191, 18ax-mp 5 . . 3 ω ⊆ ω
2017, 19eqssi 3118 . 2 ω = ω
21 dflim2 4300 . 2 (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ω))
221, 2, 20, 21mpbir3an 1164 1 Lim ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  wss 3076  c0 3368   cuni 3744  Ord word 4292  Lim wlim 4294  suc csuc 4295  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-tr 4035  df-iord 4296  df-ilim 4299  df-suc 4301  df-iom 4513
This theorem is referenced by:  freccllem  6307  frecfcllem  6309  frecsuclem  6311
  Copyright terms: Public domain W3C validator