ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom GIF version

Theorem limom 4607
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4600 . 2 Ord ω
2 peano1 4587 . 2 ∅ ∈ ω
3 vex 2738 . . . . . . . . 9 𝑥 ∈ V
43sucex 4492 . . . . . . . 8 suc 𝑥 ∈ V
54isseti 2743 . . . . . . 7 𝑧 𝑧 = suc 𝑥
6 peano2 4588 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
73sucid 4411 . . . . . . . . 9 𝑥 ∈ suc 𝑥
86, 7jctil 312 . . . . . . . 8 (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))
9 eleq2 2239 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑥𝑧𝑥 ∈ suc 𝑥))
10 eleq1 2238 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω))
119, 10anbi12d 473 . . . . . . . 8 (𝑧 = suc 𝑥 → ((𝑥𝑧𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)))
128, 11syl5ibr 156 . . . . . . 7 (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω)))
135, 12eximii 1600 . . . . . 6 𝑧(𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω))
141319.37aiv 1673 . . . . 5 (𝑥 ∈ ω → ∃𝑧(𝑥𝑧𝑧 ∈ ω))
15 eluni 3808 . . . . 5 (𝑥 ω ↔ ∃𝑧(𝑥𝑧𝑧 ∈ ω))
1614, 15sylibr 134 . . . 4 (𝑥 ∈ ω → 𝑥 ω)
1716ssriv 3157 . . 3 ω ⊆ ω
18 orduniss 4419 . . . 4 (Ord ω → ω ⊆ ω)
191, 18ax-mp 5 . . 3 ω ⊆ ω
2017, 19eqssi 3169 . 2 ω = ω
21 dflim2 4364 . 2 (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ω))
221, 2, 20, 21mpbir3an 1179 1 Lim ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  wss 3127  c0 3420   cuni 3805  Ord word 4356  Lim wlim 4358  suc csuc 4359  ωcom 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841  df-tr 4097  df-iord 4360  df-ilim 4363  df-suc 4365  df-iom 4584
This theorem is referenced by:  freccllem  6393  frecfcllem  6395  frecsuclem  6397
  Copyright terms: Public domain W3C validator