ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom GIF version

Theorem limom 4650
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom Lim ω

Proof of Theorem limom
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4643 . 2 Ord ω
2 peano1 4630 . 2 ∅ ∈ ω
3 vex 2766 . . . . . . . . 9 𝑥 ∈ V
43sucex 4535 . . . . . . . 8 suc 𝑥 ∈ V
54isseti 2771 . . . . . . 7 𝑧 𝑧 = suc 𝑥
6 peano2 4631 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
73sucid 4452 . . . . . . . . 9 𝑥 ∈ suc 𝑥
86, 7jctil 312 . . . . . . . 8 (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))
9 eleq2 2260 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑥𝑧𝑥 ∈ suc 𝑥))
10 eleq1 2259 . . . . . . . . 9 (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω))
119, 10anbi12d 473 . . . . . . . 8 (𝑧 = suc 𝑥 → ((𝑥𝑧𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)))
128, 11imbitrrid 156 . . . . . . 7 (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω)))
135, 12eximii 1616 . . . . . 6 𝑧(𝑥 ∈ ω → (𝑥𝑧𝑧 ∈ ω))
141319.37aiv 1689 . . . . 5 (𝑥 ∈ ω → ∃𝑧(𝑥𝑧𝑧 ∈ ω))
15 eluni 3842 . . . . 5 (𝑥 ω ↔ ∃𝑧(𝑥𝑧𝑧 ∈ ω))
1614, 15sylibr 134 . . . 4 (𝑥 ∈ ω → 𝑥 ω)
1716ssriv 3187 . . 3 ω ⊆ ω
18 orduniss 4460 . . . 4 (Ord ω → ω ⊆ ω)
191, 18ax-mp 5 . . 3 ω ⊆ ω
2017, 19eqssi 3199 . 2 ω = ω
21 dflim2 4405 . 2 (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ω))
221, 2, 20, 21mpbir3an 1181 1 Lim ω
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wss 3157  c0 3450   cuni 3839  Ord word 4397  Lim wlim 4399  suc csuc 4400  ωcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-ilim 4404  df-suc 4406  df-iom 4627
This theorem is referenced by:  freccllem  6460  frecfcllem  6462  frecsuclem  6464
  Copyright terms: Public domain W3C validator