ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limeq GIF version

Theorem limeq 4467
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 4462 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 eleq2 2293 . . 3 (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵))
3 id 19 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 3896 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2244 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1346 . 2 (𝐴 = 𝐵 → ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵)))
7 dflim2 4460 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
8 dflim2 4460 . 2 (Lim 𝐵 ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵))
96, 7, 83bitr4g 223 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  c0 3491   cuni 3887  Ord word 4452  Lim wlim 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456  df-ilim 4459
This theorem is referenced by:  limuni2  4487
  Copyright terms: Public domain W3C validator