ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limeq GIF version

Theorem limeq 4215
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 4210 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 eleq2 2152 . . 3 (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵))
3 id 19 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 3670 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2103 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1249 . 2 (𝐴 = 𝐵 → ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵)))
7 dflim2 4208 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
8 dflim2 4208 . 2 (Lim 𝐵 ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵))
96, 7, 83bitr4g 222 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 925   = wceq 1290  wcel 1439  c0 3289   cuni 3661  Ord word 4200  Lim wlim 4202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-in 3008  df-ss 3015  df-uni 3662  df-tr 3945  df-iord 4204  df-ilim 4207
This theorem is referenced by:  limuni2  4235
  Copyright terms: Public domain W3C validator