| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limeq | GIF version | ||
| Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 4432 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
| 2 | eleq2 2270 | . . 3 ⊢ (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵)) | |
| 3 | id 19 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 4 | unieq 3868 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 5 | 3, 4 | eqeq12d 2221 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3anbi123d 1325 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵 ∧ 𝐵 = ∪ 𝐵))) |
| 7 | dflim2 4430 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | |
| 8 | dflim2 4430 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵 ∧ 𝐵 = ∪ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∅c0 3464 ∪ cuni 3859 Ord word 4422 Lim wlim 4424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-in 3176 df-ss 3183 df-uni 3860 df-tr 4154 df-iord 4426 df-ilim 4429 |
| This theorem is referenced by: limuni2 4457 |
| Copyright terms: Public domain | W3C validator |