ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limeq GIF version

Theorem limeq 4355
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 4350 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 eleq2 2230 . . 3 (𝐴 = 𝐵 → (∅ ∈ 𝐴 ↔ ∅ ∈ 𝐵))
3 id 19 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 3798 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2180 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1302 . 2 (𝐴 = 𝐵 → ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵)))
7 dflim2 4348 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
8 dflim2 4348 . 2 (Lim 𝐵 ↔ (Ord 𝐵 ∧ ∅ ∈ 𝐵𝐵 = 𝐵))
96, 7, 83bitr4g 222 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968   = wceq 1343  wcel 2136  c0 3409   cuni 3789  Ord word 4340  Lim wlim 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-ilim 4347
This theorem is referenced by:  limuni2  4375
  Copyright terms: Public domain W3C validator