ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni GIF version

Theorem limuni 4428
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 dflim2 4402 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
21simp3bi 1016 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  c0 3447   cuni 3836  Ord word 4394  Lim wlim 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982  df-ilim 4401
This theorem is referenced by:  limuni2  4429  nlimsucg  4599  freccllem  6457  frecfcllem  6459  frecsuclem  6461
  Copyright terms: Public domain W3C validator