| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > limuni | GIF version | ||
| Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) | 
| Ref | Expression | 
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dflim2 4405 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1016 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∅c0 3450 ∪ cuni 3839 Ord word 4397 Lim wlim 4399 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-ilim 4404 | 
| This theorem is referenced by: limuni2 4432 nlimsucg 4602 freccllem 6460 frecfcllem 6462 frecsuclem 6464 | 
| Copyright terms: Public domain | W3C validator |