| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nlim0 | GIF version | ||
| Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| nlim0 | ⊢ ¬ Lim ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | simp2 1000 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 663 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
| 4 | dflim2 4405 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
| 5 | 3, 4 | mtbir 672 | 1 ⊢ ¬ Lim ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∅c0 3450 ∪ cuni 3839 Ord word 4397 Lim wlim 4399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-nul 3451 df-ilim 4404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |