ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlim0 GIF version

Theorem nlim0 4425
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0 ¬ Lim ∅

Proof of Theorem nlim0
StepHypRef Expression
1 noel 3450 . . 3 ¬ ∅ ∈ ∅
2 simp2 1000 . . 3 ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅) → ∅ ∈ ∅)
31, 2mto 663 . 2 ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅)
4 dflim2 4401 . 2 (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅))
53, 4mtbir 672 1 ¬ Lim ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  w3a 980   = wceq 1364  wcel 2164  c0 3446   cuni 3835  Ord word 4393  Lim wlim 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-nul 3447  df-ilim 4400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator