Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-suc | GIF version |
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4397). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
df-suc | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csuc 4350 | . 2 class suc 𝐴 |
3 | 1 | csn 3583 | . . 3 class {𝐴} |
4 | 1, 3 | cun 3119 | . 2 class (𝐴 ∪ {𝐴}) |
5 | 2, 4 | wceq 1348 | 1 wff suc 𝐴 = (𝐴 ∪ {𝐴}) |
Colors of variables: wff set class |
This definition is referenced by: suceq 4387 elsuci 4388 elsucg 4389 elsuc2g 4390 nfsuc 4393 suc0 4396 sucprc 4397 unisuc 4398 unisucg 4399 sssucid 4400 iunsuc 4405 sucexb 4481 ordsucim 4484 ordsucss 4488 2ordpr 4508 orddif 4531 sucprcreg 4533 elomssom 4589 omsinds 4606 tfrlemisucfn 6303 tfr1onlemsucfn 6319 tfrcllemsucfn 6332 rdgisuc1 6363 df2o3 6409 oasuc 6443 omsuc 6451 enpr2d 6795 phplem1 6830 fiunsnnn 6859 unsnfi 6896 fiintim 6906 fidcenumlemrks 6930 fidcenumlemr 6932 nnnninfeq2 7105 nninfwlpoimlemg 7151 pm54.43 7167 dju1en 7190 pw1nel3 7208 sucpw1nel3 7210 frecfzennn 10382 hashp1i 10745 ennnfonelemg 12358 ennnfonelemhdmp1 12364 ennnfonelemkh 12367 ennnfonelemhf1o 12368 bdcsuc 13915 bdeqsuc 13916 bj-sucexg 13957 bj-nntrans 13986 bj-nnelirr 13988 bj-omtrans 13991 nninfsellemdc 14043 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |