| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-suc | GIF version | ||
| Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4502). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-suc | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csuc 4455 | . 2 class suc 𝐴 |
| 3 | 1 | csn 3666 | . . 3 class {𝐴} |
| 4 | 1, 3 | cun 3195 | . 2 class (𝐴 ∪ {𝐴}) |
| 5 | 2, 4 | wceq 1395 | 1 wff suc 𝐴 = (𝐴 ∪ {𝐴}) |
| Colors of variables: wff set class |
| This definition is referenced by: suceq 4492 elsuci 4493 elsucg 4494 elsuc2g 4495 nfsuc 4498 suc0 4501 sucprc 4502 unisuc 4503 unisucg 4504 sssucid 4505 iunsuc 4510 sucexb 4588 ordsucim 4591 ordsucss 4595 2ordpr 4615 orddif 4638 sucprcreg 4640 elomssom 4696 omsinds 4713 tfrlemisucfn 6468 tfr1onlemsucfn 6484 tfrcllemsucfn 6497 rdgisuc1 6528 df2o3 6574 oasuc 6608 omsuc 6616 enpr2d 6970 phplem1 7009 fiunsnnn 7039 unsnfi 7077 fiintim 7089 fidcenumlemrks 7116 fidcenumlemr 7118 nnnninfeq2 7292 nninfwlpoimlemg 7338 pm54.43 7359 dju1en 7391 pw1nel3 7412 sucpw1nel3 7414 frecfzennn 10643 hashp1i 11027 ennnfonelemg 12969 ennnfonelemhdmp1 12975 ennnfonelemkh 12978 ennnfonelemhf1o 12979 bdcsuc 16201 bdeqsuc 16202 bj-sucexg 16243 bj-nntrans 16272 bj-nnelirr 16274 bj-omtrans 16277 nninfsellemdc 16335 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |