Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-suc | GIF version |
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4406). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
df-suc | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csuc 4359 | . 2 class suc 𝐴 |
3 | 1 | csn 3589 | . . 3 class {𝐴} |
4 | 1, 3 | cun 3125 | . 2 class (𝐴 ∪ {𝐴}) |
5 | 2, 4 | wceq 1353 | 1 wff suc 𝐴 = (𝐴 ∪ {𝐴}) |
Colors of variables: wff set class |
This definition is referenced by: suceq 4396 elsuci 4397 elsucg 4398 elsuc2g 4399 nfsuc 4402 suc0 4405 sucprc 4406 unisuc 4407 unisucg 4408 sssucid 4409 iunsuc 4414 sucexb 4490 ordsucim 4493 ordsucss 4497 2ordpr 4517 orddif 4540 sucprcreg 4542 elomssom 4598 omsinds 4615 tfrlemisucfn 6315 tfr1onlemsucfn 6331 tfrcllemsucfn 6344 rdgisuc1 6375 df2o3 6421 oasuc 6455 omsuc 6463 enpr2d 6807 phplem1 6842 fiunsnnn 6871 unsnfi 6908 fiintim 6918 fidcenumlemrks 6942 fidcenumlemr 6944 nnnninfeq2 7117 nninfwlpoimlemg 7163 pm54.43 7179 dju1en 7202 pw1nel3 7220 sucpw1nel3 7222 frecfzennn 10396 hashp1i 10758 ennnfonelemg 12371 ennnfonelemhdmp1 12377 ennnfonelemkh 12380 ennnfonelemhf1o 12381 bdcsuc 14192 bdeqsuc 14193 bj-sucexg 14234 bj-nntrans 14263 bj-nnelirr 14265 bj-omtrans 14268 nninfsellemdc 14320 nninfsellemsuc 14322 |
Copyright terms: Public domain | W3C validator |