| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-suc | GIF version | ||
| Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4448). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-suc | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csuc 4401 | . 2 class suc 𝐴 |
| 3 | 1 | csn 3623 | . . 3 class {𝐴} |
| 4 | 1, 3 | cun 3155 | . 2 class (𝐴 ∪ {𝐴}) |
| 5 | 2, 4 | wceq 1364 | 1 wff suc 𝐴 = (𝐴 ∪ {𝐴}) |
| Colors of variables: wff set class |
| This definition is referenced by: suceq 4438 elsuci 4439 elsucg 4440 elsuc2g 4441 nfsuc 4444 suc0 4447 sucprc 4448 unisuc 4449 unisucg 4450 sssucid 4451 iunsuc 4456 sucexb 4534 ordsucim 4537 ordsucss 4541 2ordpr 4561 orddif 4584 sucprcreg 4586 elomssom 4642 omsinds 4659 tfrlemisucfn 6391 tfr1onlemsucfn 6407 tfrcllemsucfn 6420 rdgisuc1 6451 df2o3 6497 oasuc 6531 omsuc 6539 enpr2d 6885 phplem1 6922 fiunsnnn 6951 unsnfi 6989 fiintim 7001 fidcenumlemrks 7028 fidcenumlemr 7030 nnnninfeq2 7204 nninfwlpoimlemg 7250 pm54.43 7271 dju1en 7298 pw1nel3 7316 sucpw1nel3 7318 frecfzennn 10537 hashp1i 10921 ennnfonelemg 12647 ennnfonelemhdmp1 12653 ennnfonelemkh 12656 ennnfonelemhf1o 12657 bdcsuc 15634 bdeqsuc 15635 bj-sucexg 15676 bj-nntrans 15705 bj-nnelirr 15707 bj-omtrans 15710 nninfsellemdc 15765 nninfsellemsuc 15767 |
| Copyright terms: Public domain | W3C validator |