![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecased | GIF version |
Description: Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.) |
Ref | Expression |
---|---|
ecased.1 | ⊢ (𝜑 → ¬ 𝜒) |
ecased.2 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ecased | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecased.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
2 | ecased.2 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | jca 301 | . 2 ⊢ (𝜑 → (¬ 𝜒 ∧ (𝜓 ∨ 𝜒))) |
4 | orel2 683 | . . 3 ⊢ (¬ 𝜒 → ((𝜓 ∨ 𝜒) → 𝜓)) | |
5 | 4 | imp 123 | . 2 ⊢ ((¬ 𝜒 ∧ (𝜓 ∨ 𝜒)) → 𝜓) |
6 | 3, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 667 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 583 ax-io 668 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ecase23d 1293 preleq 4399 ordsuc 4407 reg3exmidlemwe 4422 sotri3 4863 diffisn 6689 onunsnss 6707 suplub2ti 6776 fodjum 6889 addnqprlemfl 7215 addnqprlemfu 7216 mulnqprlemfl 7231 mulnqprlemfu 7232 addcanprleml 7270 addcanprlemu 7271 cauappcvgprlemladdru 7312 cauappcvgprlemladdrl 7313 caucvgprlemladdrl 7334 caucvgprprlemaddq 7364 ltletr 7671 apreap 8161 ltleap 8204 uzm1 9148 xrltletr 9373 xaddf 9410 xaddval 9411 iseqf1olemqcl 10036 iseqf1olemnab 10038 iseqf1olemab 10039 exp3val 10072 zfz1isolemiso 10359 ltabs 10635 xrmaxiflemlub 10791 bezoutlemmain 11414 nninfalllem1 12604 nninfall 12605 nninfsellemqall 12612 |
Copyright terms: Public domain | W3C validator |