| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecase23d | GIF version | ||
| Description: Variation of ecased 1360 with three disjuncts instead of two. (Contributed by NM, 22-Apr-1994.) (Revised by Jim Kingdon, 9-Dec-2017.) |
| Ref | Expression |
|---|---|
| ecase23d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| ecase23d.2 | ⊢ (𝜑 → ¬ 𝜃) |
| ecase23d.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| ecase23d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase23d.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | ecase23d.2 | . . 3 ⊢ (𝜑 → ¬ 𝜃) | |
| 3 | ecase23d.3 | . . . 4 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 4 | df-3or 981 | . . . 4 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜓 ∨ 𝜒) ∨ 𝜃)) | |
| 5 | 3, 4 | sylib 122 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜒) ∨ 𝜃)) |
| 6 | 2, 5 | ecased 1360 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| 7 | 1, 6 | ecased 1360 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: iseqf1olemklt 10590 xrmaxiflemcl 11410 xrmaxifle 11411 xrmaxiflemab 11412 xrmaxiflemlub 11413 ennnfonelemex 12631 mulgval 13252 mulgfng 13254 subgmulg 13318 |
| Copyright terms: Public domain | W3C validator |