ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrri GIF version

Theorem eqnetrri 2400
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrr.1 𝐴 = 𝐵
eqnetrr.2 𝐴𝐶
Assertion
Ref Expression
eqnetrri 𝐵𝐶

Proof of Theorem eqnetrri
StepHypRef Expression
1 eqnetrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2208 . 2 𝐵 = 𝐴
3 eqnetrr.2 . 2 𝐴𝐶
42, 3eqnetri 2398 1 𝐵𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-ne 2376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator