![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqnetrri | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrr.1 | ⊢ 𝐴 = 𝐵 |
eqnetrr.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
eqnetrri | ⊢ 𝐵 ≠ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2181 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqnetrr.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
4 | 2, 3 | eqnetri 2370 | 1 ⊢ 𝐵 ≠ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-ne 2348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |