| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqnetrri | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrr.1 | ⊢ 𝐴 = 𝐵 |
| eqnetrr.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| eqnetrri | ⊢ 𝐵 ≠ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqnetrr.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 4 | 2, 3 | eqnetri 2390 | 1 ⊢ 𝐵 ≠ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |