| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqnetrrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnetrrd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrrd | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqnetrrd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 4 | 2, 3 | eqnetrd 2391 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: netap 7319 2omotaplemap 7322 pcadd 12485 |
| Copyright terms: Public domain | W3C validator |