ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetri GIF version

Theorem eqnetri 2350
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetr.1 𝐴 = 𝐵
eqnetr.2 𝐵𝐶
Assertion
Ref Expression
eqnetri 𝐴𝐶

Proof of Theorem eqnetri
StepHypRef Expression
1 eqnetr.2 . 2 𝐵𝐶
2 eqnetr.1 . . 3 𝐴 = 𝐵
32neeq1i 2342 . 2 (𝐴𝐶𝐵𝐶)
41, 3mpbir 145 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1335  wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-4 1490  ax-17 1506  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-ne 2328
This theorem is referenced by:  eqnetrri  2352  2on0  6367  1n0  6373  basendxnplusgndx  12256  plusgndxnmulrndx  12263  basendxnmulrndx  12264
  Copyright terms: Public domain W3C validator