ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd GIF version

Theorem eqnetrd 2399
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1 (𝜑𝐴 = 𝐵)
eqnetrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrd (𝜑𝐴𝐶)

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2 (𝜑𝐵𝐶)
2 eqnetrd.1 . . 3 (𝜑𝐴 = 𝐵)
32neeq1d 2393 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 167 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-ne 2376
This theorem is referenced by:  eqnetrrd  2401  ifnetruedc  3612  ifnefals  3613  frecabcl  6475  frecsuclem  6482  omp1eomlem  7178  xaddnemnf  9961  xaddnepnf  9962  hashprg  10934  bezoutr1  12273  phibndlem  12457  dfphi2  12461  lgsne0  15433  2sqlem8a  15517  2sqlem8  15518
  Copyright terms: Public domain W3C validator