ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd GIF version

Theorem eqnetrd 2424
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1 (𝜑𝐴 = 𝐵)
eqnetrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrd (𝜑𝐴𝐶)

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2 (𝜑𝐵𝐶)
2 eqnetrd.1 . . 3 (𝜑𝐴 = 𝐵)
32neeq1d 2418 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 167 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-ne 2401
This theorem is referenced by:  eqnetrrd  2426  ifnetruedc  3646  ifnefals  3647  frecabcl  6543  frecsuclem  6550  omp1eomlem  7257  xaddnemnf  10049  xaddnepnf  10050  hashprg  11025  bezoutr1  12549  phibndlem  12733  dfphi2  12737  lgsne0  15711  2sqlem8a  15795  2sqlem8  15796
  Copyright terms: Public domain W3C validator