| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqnetrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| eqnetrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnetrd.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| eqnetrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnetrd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | eqnetrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | neeq1d 2395 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
| 4 | 1, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: eqnetrrd 2403 ifnetruedc 3618 ifnefals 3619 frecabcl 6498 frecsuclem 6505 omp1eomlem 7211 xaddnemnf 9999 xaddnepnf 10000 hashprg 10975 bezoutr1 12429 phibndlem 12613 dfphi2 12617 lgsne0 15590 2sqlem8a 15674 2sqlem8 15675 |
| Copyright terms: Public domain | W3C validator |