ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd GIF version

Theorem eqnetrd 2391
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1 (𝜑𝐴 = 𝐵)
eqnetrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrd (𝜑𝐴𝐶)

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2 (𝜑𝐵𝐶)
2 eqnetrd.1 . . 3 (𝜑𝐴 = 𝐵)
32neeq1d 2385 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 167 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-ne 2368
This theorem is referenced by:  eqnetrrd  2393  ifnetruedc  3602  ifnefals  3603  frecabcl  6457  frecsuclem  6464  omp1eomlem  7160  xaddnemnf  9932  xaddnepnf  9933  hashprg  10900  bezoutr1  12200  phibndlem  12384  dfphi2  12388  lgsne0  15279  2sqlem8a  15363  2sqlem8  15364
  Copyright terms: Public domain W3C validator