Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrd GIF version

Theorem eqnetrd 2333
 Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrd.1 (𝜑𝐴 = 𝐵)
eqnetrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqnetrd (𝜑𝐴𝐶)

Proof of Theorem eqnetrd
StepHypRef Expression
1 eqnetrd.2 . 2 (𝜑𝐵𝐶)
2 eqnetrd.1 . . 3 (𝜑𝐴 = 𝐵)
32neeq1d 2327 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
41, 3mpbird 166 1 (𝜑𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ≠ wne 2309 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-4 1488  ax-17 1507  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-cleq 2133  df-ne 2310 This theorem is referenced by:  eqnetrrd  2335  frecabcl  6307  frecsuclem  6314  omp1eomlem  6995  xaddnemnf  9697  xaddnepnf  9698  hashprg  10613  bezoutr1  11791  phibndlem  11962  dfphi2  11966
 Copyright terms: Public domain W3C validator