Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqnetrd | GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnetrd.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
eqnetrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
2 | eqnetrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | neeq1d 2354 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
4 | 1, 3 | mpbird 166 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: eqnetrrd 2362 frecabcl 6367 frecsuclem 6374 omp1eomlem 7059 xaddnemnf 9793 xaddnepnf 9794 hashprg 10721 bezoutr1 11966 phibndlem 12148 dfphi2 12152 lgsne0 13579 2sqlem8a 13598 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |