| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqnetrd | GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) | 
| Ref | Expression | 
|---|---|
| eqnetrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| eqnetrd.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) | 
| Ref | Expression | 
|---|---|
| eqnetrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqnetrd.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 2 | eqnetrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | neeq1d 2385 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | 
| 4 | 1, 3 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: eqnetrrd 2393 ifnetruedc 3602 ifnefals 3603 frecabcl 6457 frecsuclem 6464 omp1eomlem 7160 xaddnemnf 9932 xaddnepnf 9933 hashprg 10900 bezoutr1 12200 phibndlem 12384 dfphi2 12388 lgsne0 15279 2sqlem8a 15363 2sqlem8 15364 | 
| Copyright terms: Public domain | W3C validator |