ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ssres GIF version

Theorem f1ssres 5472
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5463 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 5433 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 283 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 5263 . . . . 5 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 275 . . . 4 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
6 funres11 5330 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
75, 6syl 14 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
87adantr 276 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
9 df-f1 5263 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
103, 8, 9sylanbrc 417 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wss 3157  ccnv 4662  cres 4665  Fun wfun 5252  wf 5254  1-1wf1 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263
This theorem is referenced by:  f1resf1  5473  f1ores  5519  conjsubgen  13408
  Copyright terms: Public domain W3C validator