![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ssres | GIF version |
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
f1ssres | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5421 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | fssres 5391 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) | |
3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | df-f1 5221 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 4 | simprbi 275 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
6 | funres11 5288 | . . . 4 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐶)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡(𝐹 ↾ 𝐶)) |
8 | 7 | adantr 276 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → Fun ◡(𝐹 ↾ 𝐶)) |
9 | df-f1 5221 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) | |
10 | 3, 8, 9 | sylanbrc 417 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3129 ◡ccnv 4625 ↾ cres 4628 Fun wfun 5210 ⟶wf 5212 –1-1→wf1 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 |
This theorem is referenced by: f1resf1 5431 f1ores 5476 |
Copyright terms: Public domain | W3C validator |