ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ssres GIF version

Theorem f1ssres 5209
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5200 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fssres 5171 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
31, 2sylan 277 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
4 df-f1 5007 . . . . 5 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
54simprbi 269 . . . 4 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
6 funres11 5072 . . . 4 (Fun 𝐹 → Fun (𝐹𝐶))
75, 6syl 14 . . 3 (𝐹:𝐴1-1𝐵 → Fun (𝐹𝐶))
87adantr 270 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun (𝐹𝐶))
9 df-f1 5007 . 2 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
103, 8, 9sylanbrc 408 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wss 2997  ccnv 4427  cres 4430  Fun wfun 4996  wf 4998  1-1wf1 4999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007
This theorem is referenced by:  f1resf1  5210  f1ores  5252
  Copyright terms: Public domain W3C validator