ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem GIF version

Theorem inresflem 7188
Description: Lemma for inlresf1 7189 and inrresf1 7190. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
inresflem.2 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
inresflem 𝐹:𝐴1-1𝐵
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
2 f1of1 5543 . . 3 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴1-1→({𝑋} × 𝐴))
31, 2ax-mp 5 . 2 𝐹:𝐴1-1→({𝑋} × 𝐴)
4 f1ofn 5545 . . . 4 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴)
51, 4ax-mp 5 . . 3 𝐹 Fn 𝐴
6 inresflem.2 . . . . 5 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
76rgen 2561 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ 𝐵
8 fnfvrnss 5763 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
95, 7, 8mp2an 426 . . 3 ran 𝐹𝐵
10 df-f 5294 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
115, 9, 10mpbir2an 945 . 2 𝐹:𝐴𝐵
12 f1ff1 5511 . 2 ((𝐹:𝐴1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
133, 11, 12mp2an 426 1 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  wral 2486  wss 3174  {csn 3643   × cxp 4691  ran crn 4694   Fn wfn 5285  wf 5286  1-1wf1 5287  1-1-ontowf1o 5289  cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-f1o 5297  df-fv 5298
This theorem is referenced by:  inlresf1  7189  inrresf1  7190
  Copyright terms: Public domain W3C validator