ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem GIF version

Theorem inresflem 7061
Description: Lemma for inlresf1 7062 and inrresf1 7063. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
inresflem.2 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
inresflem 𝐹:𝐴1-1𝐵
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
2 f1of1 5462 . . 3 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴1-1→({𝑋} × 𝐴))
31, 2ax-mp 5 . 2 𝐹:𝐴1-1→({𝑋} × 𝐴)
4 f1ofn 5464 . . . 4 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴)
51, 4ax-mp 5 . . 3 𝐹 Fn 𝐴
6 inresflem.2 . . . . 5 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
76rgen 2530 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ 𝐵
8 fnfvrnss 5678 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
95, 7, 8mp2an 426 . . 3 ran 𝐹𝐵
10 df-f 5222 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
115, 9, 10mpbir2an 942 . 2 𝐹:𝐴𝐵
12 f1ff1 5431 . 2 ((𝐹:𝐴1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
133, 11, 12mp2an 426 1 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wral 2455  wss 3131  {csn 3594   × cxp 4626  ran crn 4629   Fn wfn 5213  wf 5214  1-1wf1 5215  1-1-ontowf1o 5217  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-f1o 5225  df-fv 5226
This theorem is referenced by:  inlresf1  7062  inrresf1  7063
  Copyright terms: Public domain W3C validator