Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inresflem | GIF version |
Description: Lemma for inlresf1 7026 and inrresf1 7027. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
inresflem.1 | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
inresflem.2 | ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
inresflem | ⊢ 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inresflem.1 | . . 3 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | |
2 | f1of1 5431 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴–1-1→({𝑋} × 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐹:𝐴–1-1→({𝑋} × 𝐴) |
4 | f1ofn 5433 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴) | |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐹 Fn 𝐴 |
6 | inresflem.2 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) | |
7 | 6 | rgen 2519 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 |
8 | fnfvrnss 5645 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | |
9 | 5, 7, 8 | mp2an 423 | . . 3 ⊢ ran 𝐹 ⊆ 𝐵 |
10 | df-f 5192 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
11 | 5, 9, 10 | mpbir2an 932 | . 2 ⊢ 𝐹:𝐴⟶𝐵 |
12 | f1ff1 5401 | . 2 ⊢ ((𝐹:𝐴–1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
13 | 3, 11, 12 | mp2an 423 | 1 ⊢ 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 {csn 3576 × cxp 4602 ran crn 4605 Fn wfn 5183 ⟶wf 5184 –1-1→wf1 5185 –1-1-onto→wf1o 5187 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: inlresf1 7026 inrresf1 7027 |
Copyright terms: Public domain | W3C validator |