ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inresflem GIF version

Theorem inresflem 7162
Description: Lemma for inlresf1 7163 and inrresf1 7164. (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
inresflem.1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
inresflem.2 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
inresflem 𝐹:𝐴1-1𝐵
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem inresflem
StepHypRef Expression
1 inresflem.1 . . 3 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
2 f1of1 5521 . . 3 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴1-1→({𝑋} × 𝐴))
31, 2ax-mp 5 . 2 𝐹:𝐴1-1→({𝑋} × 𝐴)
4 f1ofn 5523 . . . 4 (𝐹:𝐴1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴)
51, 4ax-mp 5 . . 3 𝐹 Fn 𝐴
6 inresflem.2 . . . . 5 (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵)
76rgen 2559 . . . 4 𝑥𝐴 (𝐹𝑥) ∈ 𝐵
8 fnfvrnss 5740 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
95, 7, 8mp2an 426 . . 3 ran 𝐹𝐵
10 df-f 5275 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
115, 9, 10mpbir2an 945 . 2 𝐹:𝐴𝐵
12 f1ff1 5489 . 2 ((𝐹:𝐴1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴𝐵) → 𝐹:𝐴1-1𝐵)
133, 11, 12mp2an 426 1 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  wral 2484  wss 3166  {csn 3633   × cxp 4673  ran crn 4676   Fn wfn 5266  wf 5267  1-1wf1 5268  1-1-ontowf1o 5270  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278  df-fv 5279
This theorem is referenced by:  inlresf1  7163  inrresf1  7164
  Copyright terms: Public domain W3C validator