![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inresflem | GIF version |
Description: Lemma for inlresf1 7062 and inrresf1 7063. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
inresflem.1 | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
inresflem.2 | ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
inresflem | ⊢ 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inresflem.1 | . . 3 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | |
2 | f1of1 5462 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴–1-1→({𝑋} × 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐹:𝐴–1-1→({𝑋} × 𝐴) |
4 | f1ofn 5464 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴) | |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐹 Fn 𝐴 |
6 | inresflem.2 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) | |
7 | 6 | rgen 2530 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 |
8 | fnfvrnss 5678 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | |
9 | 5, 7, 8 | mp2an 426 | . . 3 ⊢ ran 𝐹 ⊆ 𝐵 |
10 | df-f 5222 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
11 | 5, 9, 10 | mpbir2an 942 | . 2 ⊢ 𝐹:𝐴⟶𝐵 |
12 | f1ff1 5431 | . 2 ⊢ ((𝐹:𝐴–1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
13 | 3, 11, 12 | mp2an 426 | 1 ⊢ 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 {csn 3594 × cxp 4626 ran crn 4629 Fn wfn 5213 ⟶wf 5214 –1-1→wf1 5215 –1-1-onto→wf1o 5217 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-f1o 5225 df-fv 5226 |
This theorem is referenced by: inlresf1 7062 inrresf1 7063 |
Copyright terms: Public domain | W3C validator |