![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inresflem | GIF version |
Description: Lemma for inlresf1 7120 and inrresf1 7121. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
inresflem.1 | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
inresflem.2 | ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
inresflem | ⊢ 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inresflem.1 | . . 3 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | |
2 | f1of1 5499 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴–1-1→({𝑋} × 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐹:𝐴–1-1→({𝑋} × 𝐴) |
4 | f1ofn 5501 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴) | |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐹 Fn 𝐴 |
6 | inresflem.2 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) | |
7 | 6 | rgen 2547 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 |
8 | fnfvrnss 5718 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | |
9 | 5, 7, 8 | mp2an 426 | . . 3 ⊢ ran 𝐹 ⊆ 𝐵 |
10 | df-f 5258 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
11 | 5, 9, 10 | mpbir2an 944 | . 2 ⊢ 𝐹:𝐴⟶𝐵 |
12 | f1ff1 5467 | . 2 ⊢ ((𝐹:𝐴–1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
13 | 3, 11, 12 | mp2an 426 | 1 ⊢ 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 {csn 3618 × cxp 4657 ran crn 4660 Fn wfn 5249 ⟶wf 5250 –1-1→wf1 5251 –1-1-onto→wf1o 5253 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-f1o 5261 df-fv 5262 |
This theorem is referenced by: inlresf1 7120 inrresf1 7121 |
Copyright terms: Public domain | W3C validator |