![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inresflem | GIF version |
Description: Lemma for inlresf1 7122 and inrresf1 7123. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
inresflem.1 | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
inresflem.2 | ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
inresflem | ⊢ 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inresflem.1 | . . 3 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | |
2 | f1of1 5500 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴–1-1→({𝑋} × 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐹:𝐴–1-1→({𝑋} × 𝐴) |
4 | f1ofn 5502 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴) | |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐹 Fn 𝐴 |
6 | inresflem.2 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) | |
7 | 6 | rgen 2547 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 |
8 | fnfvrnss 5719 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | |
9 | 5, 7, 8 | mp2an 426 | . . 3 ⊢ ran 𝐹 ⊆ 𝐵 |
10 | df-f 5259 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
11 | 5, 9, 10 | mpbir2an 944 | . 2 ⊢ 𝐹:𝐴⟶𝐵 |
12 | f1ff1 5468 | . 2 ⊢ ((𝐹:𝐴–1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
13 | 3, 11, 12 | mp2an 426 | 1 ⊢ 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 {csn 3619 × cxp 4658 ran crn 4661 Fn wfn 5250 ⟶wf 5251 –1-1→wf1 5252 –1-1-onto→wf1o 5254 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-f1o 5262 df-fv 5263 |
This theorem is referenced by: inlresf1 7122 inrresf1 7123 |
Copyright terms: Public domain | W3C validator |