| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inresflem | GIF version | ||
| Description: Lemma for inlresf1 7163 and inrresf1 7164. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| inresflem.1 | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
| inresflem.2 | ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) |
| Ref | Expression |
|---|---|
| inresflem | ⊢ 𝐹:𝐴–1-1→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inresflem.1 | . . 3 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) | |
| 2 | f1of1 5521 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹:𝐴–1-1→({𝑋} × 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐹:𝐴–1-1→({𝑋} × 𝐴) |
| 4 | f1ofn 5523 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) → 𝐹 Fn 𝐴) | |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐹 Fn 𝐴 |
| 6 | inresflem.2 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵) | |
| 7 | 6 | rgen 2559 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 |
| 8 | fnfvrnss 5740 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) | |
| 9 | 5, 7, 8 | mp2an 426 | . . 3 ⊢ ran 𝐹 ⊆ 𝐵 |
| 10 | df-f 5275 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 11 | 5, 9, 10 | mpbir2an 945 | . 2 ⊢ 𝐹:𝐴⟶𝐵 |
| 12 | f1ff1 5489 | . 2 ⊢ ((𝐹:𝐴–1-1→({𝑋} × 𝐴) ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | |
| 13 | 3, 11, 12 | mp2an 426 | 1 ⊢ 𝐹:𝐴–1-1→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∀wral 2484 ⊆ wss 3166 {csn 3633 × cxp 4673 ran crn 4676 Fn wfn 5266 ⟶wf 5267 –1-1→wf1 5268 –1-1-onto→wf1o 5270 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: inlresf1 7163 inrresf1 7164 |
| Copyright terms: Public domain | W3C validator |