ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1resf1 GIF version

Theorem f1resf1 5341
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1 (((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 5340 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
2 f1ff1 5339 . 2 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
31, 2sylan 281 1 (((𝐹:𝐴1-1𝐵𝐶𝐴) ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wss 3071  cres 4544  wf 5122  1-1wf1 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3933  df-opab 3993  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator