| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1resf1 | GIF version | ||
| Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| f1resf1 | ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres 5512 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 2 | f1ff1 5511 | . 2 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ 𝐶):𝐶⟶𝐷) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3174 ↾ cres 4695 ⟶wf 5286 –1-1→wf1 5287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |